Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 1844: 137-153, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30242708

RESUMEN

The protein quality control network consists of multiple proteins or protein complexes that monitor proteome integrity by mediating protein folding and the removal of proteins that cannot be folded. An integral component of this network is the ubiquitin-proteasome system, which controls the degradation of thousands of cellular proteins. A number of questions remain unanswered regarding the degradation of misfolded proteins. For example, how are substrates recognized and triaged? What are the identities of the components involved? And finally, what substrates are targeted by any given component of the quality control network? Finding answers to these questions is what inspires our work in protein quality control. Further characterization of protein quality control mechanisms requires methods that can reliably quantify turnover rates of model substrates. One such method is based on flow cytometry. Here, we present protocols detailing how to assess protein stability with flow cytometry and how fluorescence-activated cell sorting (FACS) can be used to screen for factors important for protein quality control and protein turnover.


Asunto(s)
Citometría de Flujo , Proteínas/metabolismo , Proteolisis , Citometría de Flujo/métodos , Expresión Génica , Genes Reporteros , Genotipo , Ensayos Analíticos de Alto Rendimiento , Mutación , Complejo de la Endopetidasa Proteasomal , Pliegue de Proteína , Estabilidad Proteica , Levaduras/genética , Levaduras/metabolismo
2.
Sci Rep ; 7(1): 4183, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28646136

RESUMEN

Proteostasis promotes viability at both the cellular and organism levels by maintaining a functional proteome. This requires an intricate protein quality control (PQC) network that mediates protein folding by molecular chaperones and removes terminally misfolded proteins via the ubiquitin proteasome system and autophagy. How changes within the PQC network can perturb proteostasis and shift the balance between protein folding and proteolysis remain poorly understood. However, given that proteostasis is altered in a number of conditions such as cancer and ageing, it is critical that we identify the factors that mediate PQC and understand the interplay between members of the proteostatic network. In this study, we investigated the degradation of a thermally unstable cytosolic model substrate and identified a surprisingly high number of strains in the yeast knockout collection that displayed impaired turnover of the misfolded substrate. We found that this phenotype was caused by frequent background mutations in the general stress response gene WHI2. We linked this proteostatic defect to the lack of activity of the stress response transcription factor Msn2, potentially under conditions where the TOR pathway is active. Our results underscore how changes to the elaborate PQC network can perturb proteostasis and impair degradation of misfolded cytosolic proteins.


Asunto(s)
Citosol/metabolismo , Mutación/genética , Pliegue de Proteína , Proteolisis , Proteostasis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fenotipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Ubiquitinación
3.
PLoS Genet ; 12(7): e1006184, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27448207

RESUMEN

Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations.


Asunto(s)
Guanilato-Quinasas/genética , Chaperonas Moleculares/genética , Agregado de Proteínas/genética , Proteolisis , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Mutación Missense , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Saccharomyces cerevisiae/genética , Solubilidad , Ubiquitinación
4.
Nat Cell Biol ; 16(12): 1227-37, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25344756

RESUMEN

The heat-shock response is a complex cellular program that induces major changes in protein translation, folding and degradation to alleviate toxicity caused by protein misfolding. Although heat shock has been widely used to study proteostasis, it remained unclear how misfolded proteins are targeted for proteolysis in these conditions. We found that Rsp5 and its mammalian homologue Nedd4 are important E3 ligases responsible for the increased ubiquitylation induced by heat stress. We determined that Rsp5 ubiquitylates mainly cytosolic misfolded proteins upon heat shock for proteasome degradation. We found that ubiquitylation of heat-induced substrates requires the Hsp40 co-chaperone Ydj1 that is further associated with Rsp5 upon heat shock. In addition, ubiquitylation is also promoted by PY Rsp5-binding motifs found primarily in the structured regions of stress-induced substrates, which can act as heat-induced degrons. Our results support a bipartite recognition mechanism combining direct and chaperone-dependent ubiquitylation of misfolded cytosolic proteins by Rsp5.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Respuesta al Choque Térmico/fisiología , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular Tumoral , Cristalografía por Rayos X , Células HeLa , Calor , Humanos , Ratones , Ubiquitina-Proteína Ligasas Nedd4 , Factores de Terminación de Péptidos/metabolismo , Estructura Terciaria de Proteína , Piruvato Descarboxilasa/metabolismo , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
5.
J Proteomics ; 100: 92-101, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23954725

RESUMEN

Maintaining proteostasis is crucial to cells given the toxic potential of misfolded proteins and aggregates. To this end, cells rely on a number of quality control pathways that survey proteins both during, as well as after synthesis to prevent protein aggregation, promote protein folding, and to target terminally misfolded proteins for degradation. In eukaryotes, the ubiquitin proteasome system plays a critical role in protein quality control by selectively targeting proteins for degradation. Recent studies have added to our understanding of cytosolic protein quality control, particularly in the area of cotranslational protein ubiquitination, and suggest that overlap exists across co- and post-translational protein quality control networks. Here, we review recent advances made in the area of cytoplasmic protein quality control with an emphasis on the pathways involved in cotranslational degradation of eukaryotic cytosolic proteins. BIOLOGICAL SIGNIFICANCE: Protein homeostasis, or proteostasis, encompasses the systems required by the cell for the generation and maintenance of the correct levels, conformational state, distribution, and degradation of its proteome. One of the challenges faced by the cell in maintaining proteostasis is the presence of misfolded proteins. Cells therefore have a number of protein quality control pathways to aid in folding or mediate the degradation of misfolded proteins. The ubiquitin proteasome system in particular plays a critical role in protein quality control by selectively targeting proteins for degradation. Nascent polypeptides can be ubiquitinated cotranslationally, however to what extent and how this is used by the cell as a quality control mechanism has, until recently, remained relatively unclear. The picture now emerging is one of two quality control networks: one that recognizes nascent polypeptides on stalled ribosomes and another that targets actively translating polypeptides that misfold, failing to attain their native conformation. These studies underscore the important balance between cotranslational protein folding and degradation in the maintenance of protein homeostasis. In this review we summarize recent advances made in the area of cytoplasmic protein quality control with an emphasis on pathways involved in cotranslational degradation of eukaryotic cytosolic proteins. This article is part of a Special Issue entitled: Can Proteomics Fill the Gap Between Genomics and Phenotypes?


Asunto(s)
Citosol/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Biosíntesis de Proteínas , Ubiquitinación , Homeostasis , Humanos , Pliegue de Proteína , Proteínas/metabolismo , Deficiencias en la Proteostasis , Control de Calidad , Ribosomas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
6.
Mol Cell Proteomics ; 12(9): 2456-67, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23716602

RESUMEN

Damaged and misfolded proteins that are no longer functional in the cell need to be eliminated. Failure to do so might lead to their accumulation and aggregation, a hallmark of many neurodegenerative diseases. Protein quality control pathways play a major role in the degradation of these proteins, which is mediated mainly by the ubiquitin proteasome system. Despite significant focus on identifying ubiquitin ligases involved in these pathways, along with their substrates, a systems-level understanding of these pathways has been lacking. For instance, as misfolded proteins are rapidly ubiquitylated, unconjugated ubiquitin is rapidly depleted from the cell upon misfolding stress; yet it is unknown whether certain targets compete more efficiently to be ubiquitylated. Using a system-wide approach, we applied statistical and computational methods to identify characteristics enriched among proteins that are further ubiquitylated after heat shock. We discovered that distinct populations of structured and, surprisingly, intrinsically disordered proteins are prone to ubiquitylation. Proteomic analysis revealed that abundant and highly structured proteins constitute the bulk of proteins in the low-solubility fraction after heat shock, but only a portion is ubiquitylated. In contrast, ubiquitylated, intrinsically disordered proteins are enriched in the low-solubility fraction after heat shock. These proteins have a very low abundance in the cell, are rarely encoded by essential genes, and are enriched in binding motifs. In additional experiments, we confirmed that several of the identified intrinsically disordered proteins were ubiquitylated after heat shock and demonstrated for two of them that their disordered regions are important for ubiquitylation after heat shock. We propose that intrinsically disordered regions may be recognized by the protein quality control machinery and thereby facilitate the ubiquitylation of proteins after heat shock.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Biología de Sistemas , Ubiquitinación , Secuencia de Aminoácidos , Sitios de Unión , Respuesta al Choque Térmico , Proteínas Intrínsecamente Desordenadas/química , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/metabolismo , Solubilidad , Proteínas Ubiquitinadas/metabolismo
7.
Am J Pathol ; 182(2): 485-504, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23332367

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe disorder characterized by progressive muscle wasting,respiratory and cardiac impairments, and premature death. No treatment exists so far, and the identification of active substances to fight DMD is urgently needed. We found that tamoxifen, a drug used to treat estrogen-dependent breast cancer, caused remarkable improvements of muscle force and of diaphragm and cardiac structure in the mdx(5Cv) mouse model of DMD. Oral tamoxifen treatment from 3 weeks of age for 15 months at a dose of 10 mg/kg/day stabilized myofiber membranes, normalized whole body force, and increased force production and resistance to repeated contractions of the triceps muscle above normal values. Tamoxifen improved the structure of leg muscles and diminished cardiac fibrosis by~ 50%. Tamoxifen also reduced fibrosis in the diaphragm, while increasing its thickness,myofiber count, and myofiber diameter, thereby augmenting by 72% the amount of contractile tissue available for respiratory function. Tamoxifen conferred a markedly slower phenotype to the muscles.Tamoxifen and its metabolites were present in nanomolar concentrations in plasma and muscles,suggesting signaling through high-affinity targets. Interestingly, the estrogen receptors ERa and ERb were several times more abundant in dystrophic than in normal muscles, and tamoxifen normalized the relative abundance of ERb isoforms. Our findings suggest that tamoxifen might be a useful therapy for DMD.


Asunto(s)
Antineoplásicos/uso terapéutico , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/patología , Tamoxifeno/uso terapéutico , Animales , Antineoplásicos/farmacología , Conducta Animal/efectos de los fármacos , Biomarcadores/metabolismo , Fenómenos Biomecánicos/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Creatina Quinasa/sangre , Diafragma/patología , Diafragma/fisiopatología , Modelos Animales de Enfermedad , Conducta Alimentaria/efectos de los fármacos , Fibrosis , Ratones , Contracción Muscular/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Distrofia Muscular Animal/sangre , Distrofia Muscular Animal/fisiopatología , Distrofia Muscular de Duchenne/sangre , Distrofia Muscular de Duchenne/fisiopatología , Miocardio/patología , Tamaño de los Órganos/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Tamoxifeno/sangre , Tamoxifeno/farmacología
8.
PLoS One ; 7(11): e48861, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23144999

RESUMEN

Since the majority of protein-coding genes in vertebrates have intra-genomic homologues, it has been difficult to eliminate the potential of functional redundancy from analyses of mutant phenotypes, whether produced by genetic lesion or transient knockdown. Further complicating these analyses, not all gene products have activities that can be assayed in vitro, where the efficiency of the various family members can be compared against constant substrates. Two vertebrate UNC-45 homologues, unc45a and unc45b, affect distinct stages of muscle differentiation when knocked down in cell culture and are functionally redundant in vitro. UNC-45 proteins are members of the UCS (UNC-45/CRO1/She4p) protein family that has been shown to regulate myosin-dependent functions from fungi to vertebrates through direct interaction with the myosin motor domain. To test whether the same functional relationship exists between these unc45 paralogs in vivo, we examined the developmental phenotypes of doubly homozygous unc45b(-/-); unc45a(-/-) mutant zebrafish embryos. We focused specifically on the combined effects on morphology and gene expression resulting from the zygotic lack of both paralogs. We found that unc45b(-/-) and unc45b(-/-); unc45a(-/-) embryos were phenotypically indistinguishable with both mutants displaying identical cardiac, skeletal muscle, and jaw defects. We also found no evidence to support a role for zygotic Unc45a function in myoblast differentiation. In contrast to previous in vitro work, this rules out a model of functional redundancy between Unc45a and Unc45b in vivo. Instead, our phylogenetic and phenotypic analyses provide evidence for the role of functional divergence in the evolution of the UCS protein family.


Asunto(s)
Chaperonas Moleculares/fisiología , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Tipificación del Cuerpo/genética , Región Branquial/embriología , Células Cultivadas , Embrión no Mamífero , Desarrollo Embrionario/genética , Evolución Molecular , Proteínas HSP90 de Choque Térmico/metabolismo , Hibridación in Situ , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Desarrollo de Músculos/genética , Proteínas Musculares , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Mutación , Miosinas/genética , Miosinas/metabolismo , Miosinas/fisiología , Fenotipo , Filogenia , ARN Mensajero/metabolismo , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología
9.
G3 (Bethesda) ; 2(5): 619-28, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22670231

RESUMEN

Mutations causing protein misfolding and proteolysis are associated with many genetic diseases. The degradation of these aberrant proteins typically is mediated by protein-quality control pathways that recognize misfolded domains. Several E3 ubiquitin ligases have been shown to target cytosolic misfolded proteins to the proteasome. In this study, we characterized a panel of more than 20 cytosolic thermosensitive mutants from six essential genes in Saccharomyces cerevisiae. These wild-type proteins are stable at restrictive temperature. In contrast, we found that a large portion of the mutants is degraded at nonpermissive temperature in a proteasome-dependent manner. Approximately one-third of the assessed unstable mutants are targeted by the Ubr1 ubiquitin ligase. In two cases, efficient degradation of the thermosensitive mutants is abrogated in the absence of Ubr1 alone, whereas in a third case it is reliant on the dual deletion of Ubr1 and the nuclear E3 ligase San1. We found that the impairment of the degradation of these quality control substrates at the restrictive temperature is associated with the suppression of thermosensitive phenotype. This study confirms that Ubr1 plays an important role in the degradation of cytosolic misfolded proteins and indicates that degradation mediated by protein quality control is a major cause for the conditional lethality of mutated essential genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...