Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Extracell Vesicles ; 12(6): e12327, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37272197

RESUMEN

Purifying extracellular vesicles (EVs) has been challenging because EVs are heterogeneous in cargo yet share similar sizes and densities. Most surface marker-based affinity separation methods are limited to research or diagnostic scales. We report that heparin chromatography can separate purified EVs into two distinct subpopulations as ascertained by MS/MS: a non-heparin-binding (NHB) fraction that contains classical EV markers such as tetraspanins and a heparin-binding (HB) fraction enriched in fibronectins and histones. Both fractions were similarly fusogenic but induced different transcriptional responses in endothelial cells. While EVs that were purified by conventional, non-affinity methods alone induced ERK1/2 phosphorylation and Ki67, the NHB fraction did not. This result suggests heparin chromatography as an additional novel fractionation step that is inherently scalable, does not lead to loss of material, and separates inflammatory and pyrogenic EVs from unreactive EVs, which will improve clinical applications.


Asunto(s)
Vesículas Extracelulares , Heparina , Heparina/farmacología , Heparina/análisis , Heparina/química , Espectrometría de Masas en Tándem , Células Endoteliales , Vesículas Extracelulares/química , Cromatografía de Afinidad/métodos
2.
Cells ; 10(12)2021 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-34943843

RESUMEN

Zika virus (ZIKV) became a global health concern in 2016 due to its links to congenital microcephaly and other birth defects. Flaviviruses, including ZIKV, reorganize the endoplasmic reticulum (ER) to form a viroplasm, a compartment where virus particles are assembled. Microtubules (MTs) and microtubule-organizing centers (MTOCs) coordinate structural and trafficking functions in the cell, and MTs also support replication of flaviviruses. Here we investigated the roles of MTs and the cell's MTOCs on ZIKV viroplasm organization and virus production. We show that a toroidal-shaped viroplasm forms upon ZIKV infection, and MTs are organized at the viroplasm core and surrounding the viroplasm. We show that MTs are necessary for viroplasm organization and impact infectious virus production. In addition, the centrosome and the Golgi MTOC are closely associated with the viroplasm, and the centrosome coordinates the organization of the ZIKV viroplasm toroidal structure. Surprisingly, viroplasm formation and virus production are not significantly impaired when infected cells have no centrosomes and impaired Golgi MTOC, and we show that MTs are anchored to the viroplasm surface in these cells. We propose that the viroplasm is a site of MT organization, and the MTs organized at the viroplasm are sufficient for efficient virus production.


Asunto(s)
Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Compartimentos de Replicación Viral/fisiología , Infección por el Virus Zika/virología , Línea Celular , Centrosoma/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Virión/metabolismo
3.
Theranostics ; 11(17): 8129-8142, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34373732

RESUMEN

Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that affects more than 44 million people worldwide. Despite the high disease burden, there is no effective treatment for people suffering from AD. Mesenchymal stem cells (MSCs) are multipotent stromal cells that have been widely studied due to their therapeutic potential. However, administration of cells has been found to have a multitude of limitations. Recently, extracellular vesicles (EVs) derived from MSCs have been studied as a therapeutic candidate, as they exhibit similar immunoprotective and immunomodulatory abilities as the host human MSCs. Methods: To test the potential therapeutic effects of MSC EVs, human bone-marrow derived MSCs were grown in three-dimensional (3D) cell culture, and small EVs were harvested using differential ultracentrifugation. These small EVs were given to non-transgenic (NT) or 5XFAD (5 familial Alzheimer's disease mutations) mice intranasally (IN) every 4 days for 4 months. The mice were then required to perform a variety of behavioral assays to measure changes in learning and memory. Afterwards, immunohistochemistry was performed on brain slices to measure amyloid beta (Aß) and glial fibrillary acidic protein (GFAP) levels. Results: The data revealed that 5XFAD mice that received hMSC-EV treatment behaved significantly better in cognitive tests than saline treated 5XFAD mice, with no significant change between EV-treated 5XFAD mice and NT mice. Additionally, we found lower Aß plaque load in the hippocampus of the EV-treated mice. Finally, less colocalization between GFAP and Aß plaques was found in the brain of EV-treated mice compared to saline. Conclusions: Taken together, these data suggest that IN administration of MSC-derived EVs can slow down AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/terapia , Trasplante de Células Madre Mesenquimatosas , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Hipocampo/metabolismo , Inmunomodulación , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Transgénicos , Placa Amiloide/metabolismo
4.
mSphere ; : e0019221, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34190582

RESUMEN

Extracellular vesicles (EVs) are membrane-encapsulated structures released by cells which carry signaling factors, proteins, and microRNAs that mediate intercellular communication. Accumulating evidence supports an important role of EVs in the progression of neurological conditions and both the spread and pathogenesis of infectious diseases. It has recently been demonstrated that EVs from hepatitis C virus (HCV)-infected individuals and cells contained replicative-competent viral RNA that was capable of infecting hepatocytes. Being a member of the same viral family, it is likely the Zika virus also hijacks EV pathways to package viral components and secrete vesicles that are infectious and potentially less immunogenic. As EVs have been shown to cross blood-brain and placental barriers, it is possible that Zika virus could usurp normal EV biology to gain access to the brain or developing fetus. Here, we demonstrate that Zika virus-infected cells secrete distinct EV subpopulations with specific viral protein profiles and infectious genomes. Zika virus infection resulted in the enhanced production of EVs with various sizes and densities compared to those released from noninfected cells. We also show that the EV-enriched tetraspanin CD63 regulates the release of EVs and Zika viral genomes and capsids following infection. Overall, these findings provide evidence for an alternative means of Zika virus transmission and demonstrate the role of EV biogenesis and trafficking proteins in the modulation of Zika virus infection and virion morphogenesis. IMPORTANCE Zika virus is a reemerging infectious disease that spread rapidly across the Caribbean and South America. Infection of pregnant women during the first trimester has been linked to microcephaly, a neurological condition where babies are born with smaller heads due to abnormal brain development. Babies born with microcephaly can develop convulsions and suffer disabilities as they age. Despite the significance of Zika virus, little is known about how the virus infects the fetus or causes disease. Extracellular vesicles (EVs) are membrane-encapsulated structures released by cells that are present in all biological fluids. EVs carry signaling factors, proteins, and microRNAs that mediate intercellular communication. EVs have been shown to be a means by which some viruses can alter cellular environments and cross previously unpassable cellular barriers. Thus, gaining a greater understanding of how Zika virus affects EV cargo may aid in the development of better diagnostics, targeted therapeutics, and/or prophylactic treatments.

5.
Viruses ; 13(4)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33920772

RESUMEN

Tetraspanin CD63 is a cluster of cell surface proteins with four transmembrane domains; it is associated with tetraspanin-enriched microdomains and typically localizes to late endosomes and lysosomes. CD63 plays an important role in the cellular trafficking of different proteins, EV cargo sorting, and vesicle formation. We have previously shown that CD63 is important in LMP1 trafficking to EVs, and this also affects LMP1-mediated intracellular signaling including MAPK/ERK, NF-κB, and mTOR activation. Using the BioID method combined with mass spectrometry, we sought to define the broad CD63 interactome and how LMP1 modulates this network of interacting proteins. We identified a total of 1600 total proteins as a network of proximal interacting proteins to CD63. Biological process enrichment analysis revealed significant involvement in signal transduction, cell communication, protein metabolism, and transportation. The CD63-only interactome was enriched in Rab GTPases, SNARE proteins, and sorting nexins, while adding LMP1 into the interactome increased the presence of signaling and ribosomal proteins. Our results showed that LMP1 alters the CD63 interactome, shifting the network of protein enrichment from protein localization and vesicle-mediated transportation to metabolic processes and translation. We also show that LMP1 interacts with mTOR, Nedd4 L, and PP2A, indicating the formation of a multiprotein complex with CD63, thereby potentially regulating LMP1-dependent mTOR signaling. Collectively, the comprehensive analysis of CD63 proximal interacting proteins provides insights into the network of partners required for endocytic trafficking and extracellular vesicle cargo sorting, formation, and secretion.


Asunto(s)
Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Tetraspanina 30/genética , Tetraspanina 30/inmunología , Proteínas de la Matriz Viral/genética , Infecciones por Virus de Epstein-Barr/virología , Vesículas Extracelulares/metabolismo , Células HEK293 , Herpesvirus Humano 4/inmunología , Humanos , Transporte de Proteínas , Transducción de Señal , Proteínas de la Matriz Viral/metabolismo
6.
ACS Biomater Sci Eng ; 7(3): 1111-1122, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33525864

RESUMEN

Stem-cell-derived extracellular vesicles (EVs) are promising tools for therapeutic delivery and imaging in the medical research fields. EVs that arise from endosomal compartments or plasma membrane budding consist of exosomes and microvesicles, which range between 30 and 200 nm and 100-1000 nm, respectively. Iron oxide nanoparticles can be used to label stem cells or possibly EVs for magnetic resonance imaging. This could be a novel way to visualize areas in the body that are affected by neurological disorders such as stroke. Human induced pluripotent stem cells (iPSK3 cells) were plated on low-attachment plates and treated with SB431542 and LDN193189 during the first week for the induction of cortical spheroid formation and grown with fibroblast growth factor 2 and cyclopamine during the second week for the neural progenitor cell (iNPC) differentiation. iNPCs were then grown on attachment plates and treated with iron oxide (Fe3O4) nanoparticles at different sizes (8, 15, and 30 nm in diameter) and concentrations (0.1, 10, and 100 µM). The spheroids and media collected from these cultures were used for iron oxide detection as well as EV isolation and characterizations, respectively. MTT assay demonstrated that the increased size and concentration of the iron oxide nanoparticles had little effect on the metabolic activity of iNPCs. In addition, the Live/Dead assay showed high viability in all the nanoparticle treated groups and the untreated control. The EVs isolated from these culture groups were analyzed and displayed similar or higher EV counts compared with control. The observed EV size averaged 200-250 nm, and electron microscopy revealed the expected exosome morphology for EVs from all groups. RT-PCR analysis of EV biogenesis markers (CD63, CD81, Alix, TSG101, Syntenin1, ADAM10, RAB27b, and Syndecan) showed differential expression between the iron-oxide-treated cultures and nontreated cultures, as well as between adherent and nonadherent 3D cultures. Iron oxide nanoparticles were detected inside the cortical spheroid cells but not EVs by MRI. The addition of iron oxide nanoparticles does not induce significant cytotoxic effects to cortical spheroids. In addition,, nanoparticles may stimulate the biogenesis of EVs when added to cortical spheroids in vitro.


Asunto(s)
Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , Compuestos Férricos , Humanos , Hierro , Óxidos
7.
BMC Mol Cell Biol ; 21(1): 58, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32731849

RESUMEN

BACKGROUND: Endosomal trafficking and amyloidogenic cleavage of amyloid precursor protein (APP) is believed to play a role in the neurodegeneration observed in Alzheimer's disease (AD). Recent evidence has suggested that packaging and secretion of APP and its amyloidogenic cleaved products into small extracellular vesicles (EVs) may facilitate uptake of these neurotoxic factors during disease progression. However, the molecular mechanisms underlying trafficking of APP into EVs are poorly understood. RESULTS: In this study, the mechanism and impact of APP trafficking into extracellular vesicles (EVs) were assessed by a series of inducible gene knockdowns. We demonstrate that vesicle-associated proteins Alix and Syntenin-1 are essential for proper subcellular localization and efficient EV secretion of APP via an endosomal sorting complexes required for transport (ESCRT)-independent pathway. The neurotoxic C-terminal fragment (CTFß) of APP is similarly secreted in association with small vesicles. These mechanisms are conserved in terminally differentiated neuron-like cells. Furthermore, knockdown of Alix and Syntenin-1 alters the subcellular localization of APP, sequestering the precursor protein to endoplasmic reticulum and endolysosomal compartments, respectively. Finally, transfer of small EVs containing mutant APP confers an increase in reactive oxygen species production and neurotoxicity to human induced pluripotent stem cell-derived cortical neurons and naïve primary neurons, an effect that is ameliorated by Alix and Syntenin-1 depletion. CONCLUSIONS: Altogether these findings elucidate a novel mechanism for understanding the intracellular trafficking of APP and CTFß into secreted extracellular vesicles, and the resultant potential impact on neurotoxicity in the context of Alzheimer's disease amyloidopathy.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Vesículas Extracelulares/metabolismo , Sinteninas/metabolismo , Precursor de Proteína beta-Amiloide/toxicidad , Animales , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/ultraestructura , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Proteínas Mutantes/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neurotoxinas/toxicidad , Transporte de Proteínas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
8.
Curr Clin Microbiol Rep ; 6(3): 121-131, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32051811

RESUMEN

PURPOSE OF REVIEW: Epstein-Barr virus (EBV) is a known determinant for numerous malignancies and may contribute to autoimmune diseases. The underlining mechanisms behind EBV pathologies is not completely understood. Recently, extracellular vesicles (EVs) released from infected cells have been found to produce profound effects on cellular microenvironments. Therefore, in this review we sought to critically evaluate the roles of EVs in EBV pathogenesis and assess their potential therapeutic and diagnostic utility. RECENT FINDINGS: EBV-altered EVs are capable of activating signaling cascades and phenotypic changes in recipient cells through the transfer of viral proteins and RNAs. Moreover, several EV-associated microRNAs have encouraging prognostic or diagnostic potential in EBV-associated cancers. SUMMARY: Current evidence suggests that EBV-modified EVs affect viral pathogenesis and cancer progression. However, further research is needed to investigate the direct role of both viral and host products on recipient cells and the mechanisms driving viral protein and RNA EV packaging and content modification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...