Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 9(5): 1325-1339, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589468

RESUMEN

Drug-resistant fungal infections pose a significant threat to human health. Dual-targeting compounds, which have multiple targets on a single pathogen, offer an effective approach to combat drug-resistant pathogens, although ensuring potent activity and high selectivity remains a challenge. Here we propose a dual-targeting strategy for designing antifungal compounds. We incorporate DNA-binding naphthalene groups as the hydrophobic moieties into the host defence peptide-mimicking poly(2-oxazoline)s. This resulted in a compound, (Gly0.8Nap0.2)20, which targets both the fungal membrane and DNA. This compound kills clinical strains of multidrug-resistant fungi including Candida spp., Cryptococcus neoformans, Cryptococcus gattii and Aspergillus fumigatus. (Gly0.8Nap0.2)20 shows superior performance compared with amphotericin B by showing not only potent antifungal activities but also high antifungal selectivity. The compound also does not induce antimicrobial resistance. Moreover, (Gly0.8Nap0.2)20 exhibits promising in vivo therapeutic activities against drug-resistant Candida albicans in mouse models of skin abrasion, corneal infection and systemic infection. This study shows that dual-targeting antifungal compounds may be effective in combating drug-resistant fungal pathogens and mitigating fungal resistance.


Asunto(s)
Antifúngicos , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Antifúngicos/química , Animales , Ratones , Humanos , Farmacorresistencia Fúngica Múltiple , Modelos Animales de Enfermedad , Cryptococcus neoformans/efectos de los fármacos , Aspergillus fumigatus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Naftalenos/farmacología , Naftalenos/química , Oxazoles/farmacología , Oxazoles/química , Candida/efectos de los fármacos , Micosis/tratamiento farmacológico , Micosis/microbiología
3.
J Am Chem Soc ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602146

RESUMEN

Multidrug resistance is the main obstacle to cancer chemotherapy. Overexpression of drug efflux pumps causes excessive drug efflux from cancer cells, ultimately leading to drug resistance. Hereby, we raise an effective strategy to overcome multidrug resistance using a synergistic combination of membranolytic antitumor ß-peptide polymer and chemotherapy drugs. This membrane-active ß-peptide polymer promotes the transmembrane transport of chemotherapeutic drugs by increasing membrane permeability and enhances the activity of chemotherapy drugs against multidrug-resistant cancer cells. As a proof-of-concept demonstration, the synergistic combination of ß-peptide polymer and doxorubicin (DOX) is substantially more effective than DOX alone against drug-resistant cancer both in vitro and in vivo. Notably, the synergistic combination maintains a potent anticancer activity after continuous use. Collectively, this combination therapy using membrane lytic ß-peptide polymer appears to be an effective strategy to reverse anticancer drug resistance.

4.
J Funct Biomater ; 14(7)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37504877

RESUMEN

Polyethylene glycol (PEG)-doxorubicin (DOX) conjugation is an important strategy to improve toxicity and enhance clinically therapeutic efficacy. However, with the frequent use of PEG-modified drugs, the accumulation of anti-PEG antibodies has become a tough issue, which limits the application of PEG-drug conjugation. As an alternative solution, poly(2-oxazoline) (POX)-DOX conjugation has shown great potential in the anti-tumor field, but the reported conjugation process of POX with DOX has drawbacks such as complex synthetic steps and purification. Herein, we propose a convenient and controllable strategy for the synthesis of POX-DOX conjugation with different chain lengths and narrow dispersity by N-boc-2-bromoacetohydrazide-initiated 2-ethyl-oxazoline polymerization and the subsequent deprotection of the N-Boc group and direct reaction with DOX. The DOX-PEtOx conjugates were firstly purified, and the successful conjugations were confirmed through various characterization methods. The synthetic DOX-PEtOxn conjugates reduce the toxicity of DOX and increase the selectivity to tumor cells, reflecting the promising application of this POX-DOX conjugation strategy in drug modification and development.

5.
Sci Adv ; 9(4): eabn0771, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36696494

RESUMEN

Drug-resistant bacterial infections have caused serious threats to human health and call for effective antibacterial agents that have low propensity to induce antimicrobial resistance. Host defense peptide-mimicking peptides are actively explored, among which poly-ß-l-lysine displays potent antibacterial activity but high cytotoxicity due to the helical structure and strong membrane disruption effect. Here, we report an effective strategy to optimize antimicrobial peptides by switching membrane disrupting to membrane penetrating and intracellular targeting by breaking the helical structure using racemic residues. Introducing ß-homo-glycine into poly-ß-lysine effectively reduces the toxicity of resulting poly-ß-peptides and affords the optimal poly-ß-peptide, ßLys50HG50, which shows potent antibacterial activity against clinically isolated methicillin-resistant Staphylococcus aureus (MRSA) and MRSA persister cells, excellent biosafety, no antimicrobial resistance, and strong therapeutic potential in both local and systemic MRSA infections. The optimal poly-ß-peptide demonstrates strong therapeutic potential and implies the success of our approach as a generalizable strategy in designing promising antibacterial polypeptides.


Asunto(s)
Antibacterianos , Péptidos Catiónicos Antimicrobianos , Permeabilidad de la Membrana Celular , Farmacorresistencia Bacteriana , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/fisiología , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/fisiología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/fisiopatología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/fisiología
6.
Chembiochem ; 24(3): e202200368, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36226554

RESUMEN

Peptide mimics, possessing excellent biocompatibility and protease stability, have attracted broad attention and research in the biomedical field. ß-Peptides and ß-peptoids, as two types of vital peptide mimics, have demonstrated great potential in the field of foldamers, antimicrobials and protein binding, etc. Currently, the main synthetic strategies for ß-peptides and ß-peptoids include solid-phase synthesis and polymerization. Among them, polymerization in one-pot can minimize the repeated separation and purification used in solid-phase synthesis, and has the advantages of high efficiency and low cost, and can synthesize ß-peptides and ß-peptoids with high molecular weight. This review summarizes the polymerization methods for ß-peptides and ß-peptoids. Moreover, future developments of the polymerization method for the synthesis of ß-peptides and ß-peptoids will be discussed.


Asunto(s)
Antiinfecciosos , Peptoides , Peptoides/química , Polimerizacion , Péptidos , Péptido Hidrolasas
7.
J Med Chem ; 65(10): 7296-7311, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35535860

RESUMEN

The high mortality rate of invasive fungal infections and quick emergence of drug-resistant fungal pathogens urgently call for potent antifungal agents. Inspired by the cell penetrating peptide (CPP) octaarginine (R8), we elongated to 28 residues poly(d,l-homoarginine) to obtain potent toxicity against both fungi and mammalian cells. Further incorporation of glutamic acid residues shields positive charge density and introduces partial zwitterions in the obtained optimal peptide polymer that displays potent antifungal activity against drug-resistant fungi superior to antifungal drugs, excellent stability upon heating and UV exposure, negligible in vitro and in vivo toxicity, and strong therapeutic effects in treating invasive fungal infections. Moreover, the peptide polymer is insusceptible to antifungal resistance owing to the unique CPP-related antifungal mechanism of fungal membrane penetration followed by disruption of organelles within fungal cells. All these merits imply the effectiveness of our strategy to develop promising antifungal agents.


Asunto(s)
Péptidos de Penetración Celular , Infecciones Fúngicas Invasoras , Animales , Antifúngicos/química , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Péptidos de Penetración Celular/farmacología , Farmacorresistencia Fúngica , Hongos , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Mamíferos , Polímeros/farmacología
8.
J Am Chem Soc ; 144(16): 7283-7294, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35420800

RESUMEN

Multidrug resistance to chemotherapeutic drugs is one of the major causes for the failure of cancer treatment. Therefore, there is an urgent need to develop anticancer agents that can combat multidrug-resistant cancers effectively and mitigate drug resistance. Here, we report a rational design of anticancer heterochiral ß-peptide polymers as synthetic mimics of host defense peptides to combat multidrug-resistant cancers. The optimal polymer shows potent and broad-spectrum anticancer activities against multidrug-resistant cancer cells and is insusceptible to anticancer drug resistance owing to its membrane-damaging mechanism. The in vivo study indicates that the optimal polymer efficiently inhibits the growth and distant transfer of solid tumors and the metastasis and seeding of circulating tumor cells. Moreover, the polymer shows excellent biocompatibility during anticancer treatment on animals. In addition, the ß-peptide polymers address those prominent shortcomings of anticancer peptides and have superior stability against proteolysis, easy synthesis in large scale, and low cost. Collectively, the structural diversity and superior anticancer performance of ß-peptide polymers imply an effective strategy in designing and finding anticancer agents to combat multidrug-resistant cancers effectively while mitigating drug resistance.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Péptidos Catiónicos Antimicrobianos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Polímeros/química , Polímeros/farmacología
9.
Adv Sci (Weinh) ; 9(14): e2104871, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35307990

RESUMEN

Potent and selective antifungal agents are urgently needed due to the quick increase of serious invasive fungal infections and the limited antifungal drugs available. Microbial metabolites have been a rich source of antimicrobial agents and have inspired the authors to design and obtain potent and selective antifungal agents, poly(DL-diaminopropionic acid) (PDAP) from the ring-opening polymerization of ß-amino acid N-thiocarboxyanhydrides, by mimicking ε-poly-lysine. PDAP kills fungal cells by penetrating the fungal cytoplasm, generating reactive oxygen, and inducing fungal apoptosis. The optimal PDAP displays potent antifungal activity with minimum inhibitory concentration as low as 0.4 µg mL-1 against Candida albicans, negligible hemolysis and cytotoxicity, and no susceptibility to antifungal resistance. In addition, PDAP effectively inhibits the formation of fungal biofilms and eradicates the mature biofilms. In vivo studies show that PDAP is safe and effective in treating fungal keratitis, which suggests PDAPs as promising new antifungal agents.


Asunto(s)
Antifúngicos , Polímeros , Antifúngicos/química , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida albicans , Pruebas de Sensibilidad Microbiana , Péptidos , Polímeros/química
10.
Angew Chem Int Ed Engl ; 61(17): e202200778, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35182092

RESUMEN

New antifungals are urgently needed to combat invasive fungal infections, due to limited types of available antifungal drugs and frequently encountered side effects, as well as the quick emergence of drug-resistance. We previously developed amine-pendent poly(2-oxazoline)s (POXs) as synthetic mimics of host defense peptides (HDPs) to have antibacterial properties, but with poor antifungal activity. Hereby, we report the finding of short guanidinium-pendent POXs, inspired by cell-penetrating peptides, as synthetic mimics of HDPs to display potent antifungal activity, superior mammalian cells versus fungi selectivity, and strong therapeutic efficacy in treating local and systemic fungal infections. Moreover, the unique antifungal mechanism of fungal cell membrane penetration and organelle disruption explains the insusceptibility of POXs to antifungal resistance. The easy synthesis and structural diversity of POXs imply their potential as a class of promising antifungal agents.


Asunto(s)
Antiinfecciosos , Micosis , Animales , Antiinfecciosos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/farmacología , Hongos , Guanidina/farmacología , Mamíferos , Pruebas de Sensibilidad Microbiana , Micosis/tratamiento farmacológico , Oxazoles
11.
J Am Chem Soc ; 144(4): 1690-1699, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35007085

RESUMEN

Interest in developing antibacterial polymers as synthetic mimics of host defense peptides (HPDs) has accelerated in recent years to combat antibiotic-resistant bacterial infections. Positively charged moieties are critical in defining the antibacterial activity and eukaryotic toxicity of HDP mimics. Most examples have utilized primary amines or guanidines as the source of positively charged moieties, inspired by the lysine and arginine residues in HDPs. Here, we explore the impact of amine group variation (primary, secondary, or tertiary amine) on the antibacterial performance of HDP-mimicking ß-peptide polymers. Our studies show that a secondary ammonium is superior to either a primary ammonium or a tertiary ammonium as the cationic moiety in antibacterial ß-peptide polymers. The optimal polymer, a homopolymer bearing secondary amino groups, displays potent antibacterial activity and the highest selectivity (low hemolysis and cytotoxicity). The optimal polymer displays potent activity against antibiotic-resistant bacteria and high therapeutic efficacy in treating MRSA-induced wound infections and keratitis as well as low acute dermal toxicity and low corneal epithelial cytotoxicity. This work suggests that secondary amines may be broadly useful in the design of antibacterial polymers.


Asunto(s)
Aminas/química , Antibacterianos/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Péptidos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infección de Heridas/tratamiento farmacológico , Animales , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Escherichia coli/efectos de los fármacos , Hemólisis/efectos de los fármacos , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Queratitis/patología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Ratones , Pruebas de Sensibilidad Microbiana , Péptidos/química , Péptidos/farmacología , Polímeros/química , Infecciones Estafilocócicas/microbiología , Infección de Heridas/microbiología
12.
iScience ; 24(10): 103124, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34622171

RESUMEN

The fascinating functions of proteins and peptides in biological systems have attracted intense interest to explore their mimics using polymers, including polypeptides synthesized from polymerization. The folding, structures and functions of proteins and polypeptides are largely dependent on their sequence. However, sequence-tunable polymerization for polypeptide synthesis is a long-lasting challenge. The application of polypeptides is also greatly hindered by their susceptibility to enzymatic degradation. Although poly-α/ß-peptide has proven to be an effective strategy to address the stability issue, the synthesis of poly-α/ß-peptide from polymerization is not available yet. Hereby, we demonstrate a living and controlled copolymerization on α-NCA and ß-NTA to prepare sequence-tunable poly-α/ß-peptides. This polymerization strategy shows a prominent solvent-driven characteristic, providing random-like copolymers of poly-α/ß-peptides in THF and block-like copolymers of poly-α/ß-peptides in a mixed solvent of CHCl3/H2O (95/5, v/v), and opens new avenues for sequence-tunable polymerization and enables facile synthesis of proteolysis tunable poly-α/ß-peptides for diverse applications.

13.
Nat Commun ; 12(1): 5898, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625571

RESUMEN

Methicillin-Resistant Staphylococcus aureus (MRSA) induced infection calls for antibacterial agents that are not prone to antimicrobial resistance. We prepare protease-resistant peptoid polymers with variable C-terminal functional groups using a ring-opening polymerization of N-substituted N-carboxyanhydrides (NNCA), which can provide peptoid polymers easily from the one-pot synthesis. We study the optimal polymer that displays effective activity against MRSA planktonic and persister cells, effective eradication of highly antibiotic-resistant MRSA biofilms, and potent anti-infectious performance in vivo using the wound infection model, the mouse keratitis model, and the mouse peritonitis model. Peptoid polymers show insusceptibility to antimicrobial resistance, which is a prominent merit of these antimicrobial agents. The low cost, convenient synthesis and structure diversity of peptoid polymers, the superior antimicrobial performance and therapeutic potential in treating MRSA infection altogether imply great potential of peptoid polymers as promising antibacterial agents in treating MRSA infection and alleviating antibiotic resistance.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Peptoides/farmacología , Polímeros/farmacología , Animales , Biopelículas/efectos de los fármacos , Biopolímeros/química , Biopolímeros/farmacología , Bacterias Grampositivas/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Peptoides/química , Polimerizacion , Polímeros/química , Infecciones Estafilocócicas/tratamiento farmacológico
14.
J Mater Chem B ; 9(25): 5092-5101, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34128037

RESUMEN

Multidrug-resistant bacterial infections are a grand challenge to global medical and health systems. Therefore, it is urgent to develop versatile antibacterial strategies that can combat bacterial resistance without displaying toxicity. Here, we synthesize antibacterial polypeptide-conjugated gold nanoparticles that exhibit potent antibacterial activities against clinically isolated multiple drug resistance Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus, and excellent in vitro and in vivo biocompatibility. The antibacterial mechanism study indicates that over-production of reactive oxygen species results in the killing of bacteria. The overall antibacterial performance of these polypeptide-conjugated gold nanoparticles and the convenient synthesis of these polypeptides via lithium hexamethyldisilazide-initiated fast ring-opening polymerization on α-amino acid N-carboxyanhydride imply the potential application of this strategy in treating bacterial infections.


Asunto(s)
Antibacterianos/farmacología , Oro/farmacología , Nanopartículas del Metal/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Péptidos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Oro/química , Pruebas de Sensibilidad Microbiana , Péptidos/química
15.
Bioact Mater ; 6(12): 4531-4541, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34027238

RESUMEN

It is an urgent need to tackle drug-resistance microbial infections that are associated with implantable biomedical devices. Host defense peptide-mimicking polymers have been actively explored in recent years to fight against drug-resistant microbes. Our recent report on lithium hexamethyldisilazide-initiated superfast polymerization on amino acid N-carboxyanhydrides enables the quick synthesis of host defense peptide-mimicking peptide polymers. Here we reported a facile and cost-effective thermoplastic polyurethane (TPU) surface modification of peptide polymer (DLL: BLG = 90 : 10) using plasma surface activation and substitution reaction between thiol and bromide groups. The peptide polymer-modified TPU surfaces exhibited board-spectrum antibacterial property as well as effective contact-killing ability in vitro. Furthermore, the peptide polymer-modified TPU surfaces showed excellent biocompatibility, displaying no hemolysis and cytotoxicity. In vivo study using methicillin-resistant Staphylococcus aureus (MRSA) for subcutaneous implantation infectious model showed that peptide polymer-modified TPU surfaces revealed obvious suppression of infection and great histocompatibility, compared to bare TPU surfaces. We further explored the antimicrobial mechanism of the peptide polymer-modified TPU surfaces, which revealed a surface contact-killing mechanism by disrupting the bacterial membrane. These results demonstrated great potential of the peptide-modified TPU surfaces for practical application to combat bacterial infections that are associated with implantable materials and devices.

16.
ACS Appl Bio Mater ; 4(5): 3811-3829, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35006811

RESUMEN

Infections have accounted for the majority of failures in implants over the past decades. Host defense peptide mimicking polymers have been considered as one of the promising antimicrobial candidates for their cost-effective synthesis, broad-spectrum antimicrobial activity, low propensity to induce drug resistance, and remarkable biocompatibility. In this review, covalent-grafting strategies are mainly discussed to tether host defense peptide mimicking polymers on surfaces, aiming to obtain potent antimicrobial activity. In addition to the antimicrobial function, we review the antimicrobial mechanism of these polymer-modified antimicrobial surfaces in precedent literatures. We also review the in vivo subcutaneous implant infection models that are critical assessments for potential biomedical applications. In the end, we provide our perspective on the future development of this field, especially for biomedical applications.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Materiales Biocompatibles/farmacología , Polímeros/farmacología , Prótesis e Implantes/microbiología , Infecciones Relacionadas con Prótesis/tratamiento farmacológico , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Bacterias/efectos de los fármacos , Materiales Biocompatibles/química , Humanos , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Polímeros/química , Infecciones Relacionadas con Prótesis/microbiología , Propiedades de Superficie
17.
ChemMedChem ; 16(2): 309-315, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-32926562

RESUMEN

Poly(2-oxazoline)s have excellent biocompatibility and have been used as FDA-approved indirect food additives. The inert property of the hydrophilic poly(2-oxazoline)s suggests them as promising substitutes for poly(ethylene glycol) (PEG) in various applications such as anti-biofouling agents. It was recently reported that poly(2-oxazoline)s themselves have antimicrobial properties as synthetic mimics of host defense peptides. These studies revealed the bioactive properties of poly(2-oxazoline)s as a new class of functional peptide mimics, by mimicking host defense peptides to display potent and selective antimicrobial activities against methicillin-resistant Staphylococcus aureus both in vitro and in vivo, without concerns about antimicrobial resistance. The high structural diversity, facile synthesis, and potent and tunable antimicrobial properties underscore the great potential of poly(2-oxazoline)s as a class of novel antimicrobial agents in dealing with drug-resistant microbial infections and antimicrobial resistance.


Asunto(s)
Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Oxazoles/farmacología , Péptidos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Oxazoles/química , Péptidos/química
18.
Biomater Sci ; 8(24): 6883-6889, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32960197

RESUMEN

Infections involving methicillin-resistant Staphylococcus aureus present great challenges, especially when biofilms and persister cells are involved. In this work, an α/ß chimeric polypeptide molecular brush (α/ß CPMB) is reported to show excellent performance in inhibiting the formation of biofilms and eradicating established biofilms. Additionally, the polymer brush efficiently killed metabolically inactive persister cells that are antibiotic-insensitive. Antimicrobial mechanism studies showed that α/ß CPMB causes membrane disturbance and a substantial increase in reactive oxygen species (ROS) levels to kill bacteria, and mesosome-like structure formation was also observed. Furthermore, the polymer brush was able to kill clinically isolated multidrug resistant Gram-positive bacteria with no risk of antimicrobial resistance. The α/ß CPMB has demonstrated great potential in addressing the great challenge of eradicating multidrug resistant Gram-positive bacterial infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Biopelículas , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología
19.
Angew Chem Int Ed Engl ; 59(16): 6412-6419, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32083767

RESUMEN

Peptides have important biological functions. However, their susceptibility to proteolysis limits their applications. We demonstrated here for the first time, that poly(2-oxazoline) (POX) can work as a functional mimic of peptides. POX-based glycine pseudopeptides, a host defense peptide mimic, had potent activities against methicillin-resistant S. aureus, which causes formidable infections. The POX mimic showed potent activity against persisters that are highly resistant to antibiotics. S. aureus did not develop resistance to POX owning to the reactive oxygen species related antimicrobial mechanism. POX-treated S. aureus is sensitive to common antibiotics, demonstrating no observable antimicrobial pressure or cross-resistance in using antimicrobial POX. This study highlights POX as a new type of functional mimic of peptides and opens new avenues in designing and exploring peptide mimetics for biological functions and applications.


Asunto(s)
Antiinfecciosos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Oxazoles/química , Peptidomiméticos/química , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana , Peptidomiméticos/síntesis química , Peptidomiméticos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo
20.
Angew Chem Int Ed Engl ; 59(18): 7240-7244, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32061180

RESUMEN

Biocompatible and proteolysis-resistant poly-ß-peptides have broad applications and are dominantly synthesized via the harsh and water-sensitive ring-opening polymerization of ß-lactams in a glovebox or using a Schlenk line, catalyzed by the strong base LiN(SiMe3 )2 . We have developed a controllable and water-insensitive ring-opening polymerization of ß-amino acid N-thiocarboxyanhydrides (ß-NTAs) that can be operated in open vessels to prepare poly-ß-peptides in high yields, with diverse functional groups, variable chain length, narrow dispersity and defined architecture. These merits imply wide applications of ß-NTA polymerization and resulting poly-ß-peptides, which is validated by the finding of a HDP-mimicking poly-ß-peptide with potent antimicrobial activities. The living ß-NTA polymerization enables the controllable synthesis of random, block copolymers and easy tuning of both terminal groups of polypeptides, which facilitated the unravelling of the antibacterial mechanism using the fluorophore-labelled poly-ß-peptide.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Péptidos/farmacología , Staphylococcus/efectos de los fármacos , Agua/química , Aminoácidos/química , Aminoácidos/farmacología , Anhídridos/química , Anhídridos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Péptidos/síntesis química , Péptidos/química , Polimerizacion , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA