Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Physiol Rev ; 98(2): 697-725, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442594

RESUMEN

After synthesis, proteins are folded into their native conformations aided by molecular chaperones. Dysfunction in folding caused by genetic mutations in numerous genes causes protein conformational diseases. Membrane proteins are more prone to misfolding due to their more intricate folding than soluble proteins. Misfolded proteins are detected by the cellular quality control systems, especially in the endoplasmic reticulum, and proteins may be retained there for eventual degradation by the ubiquitin-proteasome system or through autophagy. Some misfolded proteins aggregate, leading to pathologies in numerous neurological diseases. In vitro, modulating mutant protein folding by altering molecular chaperone expression can ameliorate some misfolding. Some small molecules known as chemical chaperones also correct mutant protein misfolding in vitro and in vivo. However, due to their lack of specificity, their potential as therapeutics is limited. Another class of compounds, known as pharmacological chaperones (pharmacoperones), binds with high specificity to misfolded proteins, either as enzyme substrates or receptor ligands, leading to decreased folding energy barriers and correction of the misfolding. Because many of the misfolded proteins are misrouted but do not have defects in function per se, pharmacoperones have promising potential in advancing to the clinic as therapeutics, since correcting routing may ameliorate the underlying mechanism of disease. This review will comprehensively summarize this exciting area of research, surveying the literature from in vitro studies in cell lines to transgenic animal models and clinical trials in several protein misfolding diseases.


Asunto(s)
Retículo Endoplásmico/metabolismo , Chaperonas Moleculares/metabolismo , Transporte de Proteínas/fisiología , Deficiencias en la Proteostasis/metabolismo , Animales , Humanos , Chaperonas Moleculares/genética , Conformación Proteica , Pliegue de Proteína , Transporte de Proteínas/genética , Deficiencias en la Proteostasis/terapia
2.
PLoS One ; 12(8): e0181830, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28767678

RESUMEN

Pharmacoperones are small molecules that diffuse into cells and rescue misfolded, mistrafficked protein mutants, restoring their function. These substances act with high target specificity, serving as templates to fold (or refold) receptors, enzymes, ion channels or other proteins and enable them to pass the scrutiny of the cellular quality control system ("rescue"). In the present study we demonstrate that a rescued mutant (L83Q) of the vasopressin type 2 receptor (V2R), shows a strong bias for Gs coupling unlike the WT V2 receptor, which couples to both Gs and Gq/11. Failure of the mutant to couple to Gq/11 was not due to a limiting quantity of G-proteins since other Gq/11-coupled receptors (WT V2R, histamine receptor and muscarinic receptor) responded appropriately to their ligands. Transfection with DNA encoding Gq enabled the V2 receptor mutant to couple to this G protein, but only modestly compared with the WT receptor. Fourteen V2R mutant pharmacoperones, of multiple chemical classes, obtained from a high throughput screen of a 660,000 structure library, and one V2R peptidomimetic antagonist rescues L83Q. The rescued mutant shows similar bias with all pharmacoperones identified, suggesting that the bias is intrinsic to the mutant protein's structure, rather than due to the chemical class of the pharmacoperone. In the case of V2R mutant Y128S, rescue with a pharmacoperone revealed constitutive activity, also with bias for Gs, although both IP and cAMP were produced in response to agonist. These results suggest that particular rescued receptor mutants show functional characteristics that differ from the WT receptor; a finding that may be important to consider as pharmacoperones are developed as therapeutic agents.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Morfolinas/farmacología , Mutación , Receptores de Vasopresinas/genética , Compuestos de Espiro/farmacología , Antagonistas de los Receptores de Hormonas Antidiuréticas/química , Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología , AMP Cíclico/metabolismo , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Modelos Moleculares , Morfolinas/química , Receptores de Vasopresinas/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Compuestos de Espiro/química
3.
SLAS Discov ; 22(7): 887-896, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28346094

RESUMEN

Primary hyperoxaluria is the underlying cause of oxalosis and is a life-threatening autosomal recessive disease, for which treatment may require dialysis or dual liver-kidney transplantation. The most common primary hyperoxaluria type 1 (PH1) is caused by genetic mutations of a liver-specific enzyme alanine:glyoxylate aminotransferase (AGT), which results in the misrouting of AGT from the peroxisomes to the mitochondria. Pharmacoperones are small molecules with the ability to modify misfolded proteins and route them correctly within the cells, which may present an effective strategy to treat AGT misrouting in PH1 disorders. We miniaturized a cell-based high-content assay into 1536-well plate format and screened ~4200 pharmacologically relevant compounds including Food and Drug Administration, European Union, and Japanese-approved drugs. This assay employs CHO cells stably expressing AGT-170, a mutant that predominantly resides in the mitochondria, where we monitor for its relocation to the peroxisomes through automated image acquisition and analysis. The miniaturized 1536-well assay yielded a Z' averaging 0.70 ± 0.07. Three drugs were identified as potential pharmacoperones from this pilot screen, demonstrating the applicability of this assay for large-scale high-throughput screening.


Asunto(s)
Hiperoxaluria/tratamiento farmacológico , Ionóforos/farmacología , Enfermedades Renales/tratamiento farmacológico , Animales , Células CHO , Cricetulus , Evaluación Preclínica de Medicamentos/métodos , Hiperoxaluria/genética , Hiperoxaluria/metabolismo , Hiperoxaluria Primaria/tratamiento farmacológico , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Trasplante de Riñón/métodos , Hígado/efectos de los fármacos , Hígado/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación/genética , Peroxisomas/efectos de los fármacos , Peroxisomas/genética , Peroxisomas/metabolismo , Diálisis Renal/métodos , Transaminasas/genética , Transaminasas/metabolismo
4.
Mol Cell Endocrinol ; 434: 176-85, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27389877

RESUMEN

Pharmacoperones rescue misrouted mutants of the vasopressin receptor type 2 (V2R) and enable them to traffic to the correct biological locus where they function. Previously, a library of nearly 645,000 structures was interrogated with a high throughput screen; pharmacoperones were identified for V2R mutants with a view toward correcting the underlying mutational defects in nephrogenic diabetes insipidus. In the present study, an orthologous assay was used to evaluate hits from the earlier study. We found no consistent relation between antagonism or agonism and pharmacoperone activity. Active pharmacoperones were identified which had minimal antagonistic activity. This increases the therapeutic reach of these drugs, since virtually all pharmacoperone drugs reported to date were selected from peptidomimetic antagonists. Such mixed-activity drugs have a complex pharmacology limiting their therapeutic utility and requiring their removal prior to stimulation of the receptor with agonist.


Asunto(s)
Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología , Mutación , Receptores de Vasopresinas/genética , Antagonistas de los Receptores de Hormonas Antidiuréticas/química , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Biblioteca de Péptidos , Pliegue de Proteína/efectos de los fármacos , Transporte de Proteínas , Receptores de Vasopresinas/agonistas , Receptores de Vasopresinas/química , Receptores de Vasopresinas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
5.
J Biomol Screen ; 21(8): 824-31, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27280550

RESUMEN

Pharmacoperones correct the folding of otherwise misfolded protein mutants, restoring function (i.e., providing "rescue") by correcting their trafficking. Currently, most pharmacoperones possess intrinsic antagonist activity because they were identified using methods initially aimed at discovering such functions. Here, we describe an ultra-high-throughput homogeneous cell-based assay with a cAMP detection system, a method specifically designed to identify pharmacoperones of the vasopressin type 2 receptor (V2R), a GPCR that, when mutated, is associated with nephrogenic diabetes insipidus. Previously developed methods to identify compounds capable of altering cellular trafficking of V2R were modified and used to screen a 645,000 compound collection by measuring the ability of library compounds to rescue a mutant hV2R [L83Q], using a cell-based luminescent detection system. The campaign initially identified 3734 positive modulators of cAMP. The confirmation and counterscreen identified only 147 of the active compounds with an EC50 of ≤5 µM. Of these, 83 were reconfirmed as active through independently obtained pure samples and were also inactive in a relevant counterscreen. Active and tractable compounds within this set can be categorized into three predominant structural clusters, described here, in the first report detailing the results of a large-scale pharmacoperone high-throughput screening campaign.


Asunto(s)
Antagonistas de los Receptores de Hormonas Antidiuréticas/aislamiento & purificación , Diabetes Insípida Nefrogénica/tratamiento farmacológico , Ensayos Analíticos de Alto Rendimiento/métodos , Receptores de Vasopresinas/genética , Antagonistas de los Receptores de Hormonas Antidiuréticas/uso terapéutico , Diabetes Insípida Nefrogénica/genética , Predisposición Genética a la Enfermedad , Humanos , Mutación , Pliegue de Proteína , Transporte de Proteínas , Receptores de Vasopresinas/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Vasopresinas/genética , Vasopresinas/metabolismo
6.
Curr Drug Targets ; 17(13): 1471-81, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26953247

RESUMEN

In many conformational diseases caused by protein mutations, the intracellular traffic of the misfolded protein is compromised, leading to reduced or abolished function of the affected protein. Pharmacoperones (from "pharmacological chaperones") are compounds that enter cells and serve as a molecular scaffold to aid misfolded mutant proteins to fold properly and adopt a stable, low-energy native conformation compatible with proper intracellular trafficking. The use of pharmacoperones represents the most promising therapeutic approach to treat misfolding disorders. This class of drugs has succeeded, in vitro and in vivo, in rescuing function of mutant, misfolded proteins, including enzymes, membrane receptors and ion channels. Here we describe the strategies to rescue function of misfolded G protein-coupled receptors, mainly of the gonadotropin-releasing hormone receptor, which has served as a valuable model for the development of pharmacoperone drugs and to better understand how this class of particular compounds is sensed by the target protein to correct routing, expression and function.


Asunto(s)
Diseño de Fármacos , Proteínas/metabolismo , Deficiencias en la Proteostasis/tratamiento farmacológico , Animales , Humanos , Chaperonas Moleculares/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación , Pliegue de Proteína , Proteínas/química , Proteínas/genética , Deficiencias en la Proteostasis/fisiopatología
7.
J Am Assoc Lab Anim Sci ; 54(6): 687-93, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26632777

RESUMEN

Most biomedical facilities that use rhesus macaques (Macaca mulatta) limit the amount of blood that may be collected for experimental purposes. These limits typically are expressed as a percentage of blood volume (BV), estimated by using a fixed ratio of blood (mL) per body weight (kg). BV estimation ratios vary widely among facilities and typically do not factor in variables known to influence BV in humans: sex, age, and body condition. We used indicator dilution methodology to determine the BV of 20 adult rhesus macaques (10 male, 10 female) that varied widely in body condition. We measured body composition by using dual-energy X-ray absorptiometry, weight, crown-to-rump length, and body condition score. Two indicators, FITC-labeled hydroxyethyl starch (FITC-HES) and radioiodinated rhesus serum albumin ((125)I-RhSA), were injected simultaneously, followed by serial blood collection. Plasma volume at time 0 was determined by linear regression. BV was calculated from the plasma volume and Hct. We found that BV calculated by using FITC-HES was consistently lower than BV calculated by using (125)I-RhSA. Sex and age did not significantly affect BV. Percentage body fat was significantly associated with BV. Subjects categorized as having 'optimal' body condition score had 18% body fat and 62.1 mL/kg BV (by FITC-HES; 74.5 mL/kg by (125)I-RhSA). Each 1% increase in body fat corresponded to approximately 1 mL/kg decrease in BV. Body condition score correlated with the body fat percentage (R(2) = 0.7469). We provide an equation for calculating BV from weight and body condition score.


Asunto(s)
Determinación del Volumen Sanguíneo/métodos , Volumen Sanguíneo , Fluoresceína-5-Isotiocianato/análogos & derivados , Derivados de Hidroxietil Almidón/análogos & derivados , Radioisótopos de Yodo/análisis , Macaca mulatta/fisiología , Tejido Adiposo , Envejecimiento , Animales , Composición Corporal , Peso Corporal , Femenino , Fluoresceína-5-Isotiocianato/análisis , Derivados de Hidroxietil Almidón/análisis , Masculino , Caracteres Sexuales
8.
Trends Pharmacol Sci ; 36(8): 498-505, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26067100

RESUMEN

Receptors, enzymes, and ion channels are traditional targets of therapeutic development. A common strategy is to target these proteins with agents that either activate or suppress their activity with ligands or substrates that occupy orthosteric sites or have allosteric interactions. An alternative approach involves regulation of protein trafficking. In principle, this approach enables 'rescue' of misfolded and misrouted mutant proteins to restore function, 'shipwrecking' of undesirable proteins by targeting them for destruction, and regulation of levels of partially expressed wild type (WT) proteins at their functional sites of action. Here, we present drug discovery strategies that identify 'pharmacoperones', which are small molecules that serve as molecular templates and cause otherwise misfolded mutant proteins to fold and route correctly.


Asunto(s)
Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Receptores Acoplados a Proteínas G/metabolismo , Animales , Humanos , Pliegue de Proteína/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
9.
Rev Invest Clin ; 67(1): 15-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25857579

RESUMEN

Pharmacoperones are hydrophobic molecule drugs that enter cells and serve as a molecular framework to cause misfolded mutant proteins to fold properly and adopt a stable conformation compatible with proper intracellular trafficking. Pharmacoperones have successfully been used experimentally to rescue function of some misfolded proteins (enzymes, receptors, channels) that lead to disease. Identification of pharmacoperones by high-throughput screens of drug libraries will likely provide new molecules that may be potentially useful to treat diseases caused by protein misfolding.


Asunto(s)
Chaperonas Moleculares/metabolismo , Proteínas/metabolismo , Deficiencias en la Proteostasis/tratamiento farmacológico , Animales , Diseño de Fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Chaperonas Moleculares/química , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Pliegue de Proteína , Proteínas/química , Deficiencias en la Proteostasis/patología
10.
Assay Drug Dev Technol ; 13(1): 16-24, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25710543

RESUMEN

Primary hyperoxaluria is a severe disease for which the best current therapy is dialysis or organ transplantation. These are risky, inconvenient, and costly procedures. In some patients, pyridoxine treatment can delay the need for these surgical procedures. The underlying cause of particular forms of this disease is the misrouting of a specific enzyme, alanine:glyoxylate aminotransferase (AGT), to the mitochondria instead of the peroxisomes. Pharmacoperones are small molecules that can rescue misfolded proteins and redirect them to their correct location, thereby restoring their function and potentially curing disease. In the present study, we miniaturized a cell-based assay to identify pharmacoperone drugs present in large chemical libraries to selectively correct AGT misrouting. This assay employs AGT-170, a mutant form of AGT that predominantly resides in the mitochondria, which we monitor for its relocation to the peroxisomes through automated image acquisition and analysis. Over the course of a pilot screen of 1,280 test compounds, we achieved an average Z'-factor of 0.72±0.02, demonstrating the suitability of this assay for HTS.


Asunto(s)
Bioensayo/métodos , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Hiperoxaluria Primaria/tratamiento farmacológico , Hiperoxaluria Primaria/patología , Chaperonas Moleculares/farmacología , Animales , Células CHO , Supervivencia Celular/efectos de los fármacos , Cricetulus , Diseño de Fármacos , Humanos , Chaperonas Moleculares/síntesis química , Chaperonas Moleculares/clasificación , Fenotipo , Tecnología Farmacéutica/métodos
11.
J Biol Chem ; 290(5): 2699-714, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25525274

RESUMEN

Pituitary gonadotropins follicle-stimulating hormone and luteinizing hormone are heterodimeric glycoproteins expressed in gonadotropes. They act on gonads and promote their development and functions including steroidogenesis and gametogenesis. Although transcriptional regulation of gonadotropin subunits has been well studied, the post-transcriptional regulation of gonadotropin subunits is not well understood. To test if microRNAs regulate the hormone-specific gonadotropin ß subunits in vivo, we deleted Dicer in gonadotropes by a Cre-lox genetic approach. We found that many of the DICER-dependent microRNAs, predicted in silico to bind gonadotropin ß subunit mRNAs, were suppressed in purified gonadotropes of mutant mice. Loss of DICER-dependent microRNAs in gonadotropes resulted in profound suppression of gonadotropin-ß subunit proteins and, consequently, the heterodimeric hormone secretion. In addition to suppression of basal levels, interestingly, the post-gonadectomy-induced rise in pituitary gonadotropin synthesis and secretion were both abolished in mutants, indicating a defective gonadal negative feedback control. Furthermore, mutants lacking Dicer in gonadotropes displayed severely reduced fertility and were rescued with exogenous hormones confirming that the fertility defects were secondary to suppressed gonadotropins. Our studies reveal that DICER-dependent microRNAs are essential for gonadotropin homeostasis and fertility in mice. Our studies also implicate microRNAs in gonadal feedback control of gonadotropin synthesis and secretion. Thus, DICER-dependent microRNAs confer a new layer of transcriptional and post-transcriptional regulation in gonadotropes to orchestrate the hypothalamus-pituitary-gonadal axis physiology.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Gonadotrofos/metabolismo , Gonadotropinas/metabolismo , Ribonucleasa III/metabolismo , Animales , ARN Helicasas DEAD-box/genética , Femenino , Fertilidad/genética , Fertilidad/fisiología , Gonadotropinas/genética , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Ribonucleasa III/genética
12.
Assay Drug Dev Technol ; 12(4): 238-46, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24831790

RESUMEN

We describe a phenotypic high throughput screening (HTS) calcium flux assay designed to identify pharmacoperones for the gonadotropin releasing hormone receptor (GnRHR). Pharmacoperones are target-specific, small molecules that diffuse into cells, rescue misfolded protein mutants, and restore them to function. Rescue is based on correcting the trafficking of mutants that would otherwise be retained in the endoplasmic reticulum and unable to function correctly. This approach identifies drugs with a significant degree of novelty, relying on cellular mechanisms that are not currently exploited. Development of such assays is important, since the extensive use of agonist/antagonist screens alone means that useful chemical structures may be present in existing libraries but have not been previously identified using existing methods. Our assay utilizes cell lines stably expressing a GnRHR mutant under the control of a tetracycline (OFF) transactivator. This allows us to quantitate the level of functional and properly trafficked G protein coupled receptors present in each test well. Furthermore, since we are able to turn receptor expression on and off, we can rapidly eliminate the majority of false positives from our screening results. Our data show that this approach is likely to be successful in identifying hits from large chemical libraries.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Receptores LHRH/efectos de los fármacos , Calcio/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Células HeLa , Humanos , Mutación/genética , Mutación/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Receptores LHRH/genética , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas
13.
Proc Natl Acad Sci U S A ; 111(15): 5735-40, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24706813

RESUMEN

FSH and luteinizing hormone (LH) are secreted constitutively or in pulses, respectively, from pituitary gonadotropes in many vertebrates, and regulate ovarian function. The molecular basis for this evolutionarily conserved gonadotropin-specific secretion pattern is not understood. Here, we show that the carboxyterminal heptapeptide in LH is a gonadotropin-sorting determinant in vivo that directs pulsatile secretion. FSH containing this heptapeptide enters the regulated pathway in gonadotropes of transgenic mice, and is released in response to gonadotropin-releasing hormone, similar to LH. FSH released from the LH secretory pathway rescued ovarian defects in Fshb-null mice as efficiently as constitutively secreted FSH. Interestingly, the rerouted FSH enhanced ovarian follicle survival, caused a dramatic increase in number of ovulations, and prolonged female reproductive lifespan. Furthermore, the rerouted FSH vastly improved the in vivo fertilization competency of eggs, their subsequent development in vitro and when transplanted, the ability to produce offspring. Our study demonstrates the feasibility to fine-tune the target tissue responses by modifying the intracellular trafficking and secretory fate of a pituitary trophic hormone. The approach to interconvert the secretory fate of proteins in vivo has pathophysiological significance, and could explain the etiology of several hormone hyperstimulation and resistance syndromes.


Asunto(s)
Evolución Biológica , Hormona Folículo Estimulante/metabolismo , Gonadotrofos/metabolismo , Hormona Luteinizante/metabolismo , Ovario/fisiología , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Western Blotting , Femenino , Fertilidad/fisiología , Ratones , Ratones Transgénicos , Microscopía Confocal , Microscopía Inmunoelectrónica , Folículo Ovárico/metabolismo , Ovario/metabolismo , Ovulación/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
Mol Cell ; 54(1): 166-179, 2014 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-24685158

RESUMEN

Molecular chaperones triage misfolded proteins via action as substrate selectors for quality control (QC) machines that fold or degrade clients. Herein, the endoplasmic reticulum (ER)-associated Hsp40 JB12 is reported to participate in partitioning mutant conformers of gonadotropin-releasing hormone receptor (GnRHR), a G protein-coupled receptor, between ER-associated degradation (ERAD) and an ERQC autophagy pathway. ERQC autophagy degrades E90K-GnRHR because pools of its partially folded and detergent-soluble degradation intermediates are resistant to ERAD. S168R-GnRHR is globally misfolded and disposed of via ERAD, but inhibition of p97, the protein retrotranslocation motor, shunts S168R-GnRHR from ERAD to ERQC autophagy. Partially folded and grossly misfolded forms of GnRHR associate with JB12 and Hsp70. Elevation of JB12 promotes ERAD of S168R-GnRHR, with E90K-GnRHR being resistant. E90K-GnRHR elicits association of the Vps34 autophagy initiation complex with JB12. Interaction between ER-associated Hsp40s and the Vps34 complex permits the selective degradation of ERAD-resistant membrane proteins via ERQC autophagy.


Asunto(s)
Autofagia , Degradación Asociada con el Retículo Endoplásmico , Pliegue de Proteína , Receptores LHRH/metabolismo , Animales , Autofagia/efectos de los fármacos , Células COS , Chlorocebus aethiops , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutación , Inhibidores de Proteasoma/farmacología , Conformación Proteica , Pliegue de Proteína/efectos de los fármacos , Transporte de Proteínas , Proteolisis , Interferencia de ARN , Receptores LHRH/química , Receptores LHRH/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Transfección
15.
Endocr Rev ; 35(4): 602-47, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24661201

RESUMEN

G protein-coupled receptors (GPCRs) are membrane proteins that traverse the plasma membrane seven times (hence, are also called 7TM receptors). The polytopic structure of GPCRs makes the folding of GPCRs difficult and complex. Indeed, many wild-type GPCRs are not folded optimally, and defects in folding are the most common cause of genetic diseases due to GPCR mutations. Both general and receptor-specific molecular chaperones aid the folding of GPCRs. Chemical chaperones have been shown to be able to correct the misfolding in mutant GPCRs, proving to be important tools for studying the structure-function relationship of GPCRs. However, their potential therapeutic value is very limited. Pharmacological chaperones (pharmacoperones) are potentially important novel therapeutics for treating genetic diseases caused by mutations in GPCR genes that resulted in misfolded mutant proteins. Pharmacoperones also increase cell surface expression of wild-type GPCRs; therefore, they could be used to treat diseases that do not harbor mutations in GPCRs. Recent studies have shown that indeed pharmacoperones work in both experimental animals and patients. High-throughput assays have been developed to identify new pharmacoperones that could be used as therapeutics for a number of endocrine and other genetic diseases.


Asunto(s)
Chaperonas Moleculares/fisiología , Chaperonas Moleculares/uso terapéutico , Receptores Acoplados a Proteínas G/fisiología , Receptores Acoplados a Proteínas G/uso terapéutico , Secuencia de Aminoácidos , Animales , Modelos Animales de Enfermedad , Quimioterapia/tendencias , Enfermedades Genéticas Congénitas/terapia , Humanos , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Mutación/genética , Pliegue de Proteína , Receptores Acoplados a Proteínas G/genética
16.
Methods Enzymol ; 535: xxi, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24377938
18.
Mol Cell Endocrinol ; 382(1): 411-423, 2014 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23806559

RESUMEN

G protein coupled receptors (GPCRs) are a large superfamily of integral cell surface plasma membrane proteins that play key roles in transducing extracellular signals, including sensory stimuli, hormones, neurotransmitters, or paracrine factors into the intracellular environment through the activation of one or more heterotrimeric G proteins. Structural alterations provoked by mutations or variations in the genes coding for GPCRs may lead to misfolding, altered plasma membrane expression of the receptor protein and frequently to disease. A number of GPCRs regulate reproductive function at different levels; these receptors include the gonadotropin-releasing hormone receptor (GnRHR) and the gonadotropin receptors (follicle-stimulating hormone receptor and luteinizing hormone receptor), which regulate the function of the pituitary-gonadal axis. Loss-of-function mutations in these receptors may lead to hypogonadotropic or hypergonadotropic hypogonadism, which encompass a broad spectrum of clinical phenotypes. In this review we describe mutations that provoke misfolding and failure of these receptors to traffick from the endoplasmic reticulum to the plasma membrane. We also discuss some aspects related to the therapeutic potential of some target-specific drugs that selectively bind to and rescue function of misfolded mutant GnRHR and gonadotropin receptors, and that represent potentially valuable strategies to treat diseases caused by inactivating mutations of these receptors.


Asunto(s)
Mutación/genética , Receptores Acoplados a Proteínas G/genética , Reproducción/fisiología , Animales , Humanos , Hipogonadismo/genética , Transporte de Proteínas
19.
Pharmacol Res ; 83: 38-51, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24373832

RESUMEN

A pharmacoperone (from "pharmacological chaperone") is a small molecule that enters cells and serves as molecular scaffolding in order to cause otherwise-misfolded mutant proteins to fold and route correctly within the cell. Pharmacoperones have broad therapeutic applicability since a large number of diseases have their genesis in the misfolding of proteins and resultant misrouting within the cell. Misrouting may result in loss-of-function and, potentially, the accumulation of defective mutants in cellular compartments. Most known pharmacoperones were initially derived from receptor antagonist screens and, for this reason, present a complex pharmacology, although these are highly target specific. In this summary, we describe efforts to produce high throughput screens that identify these molecules from chemical libraries as well as a mouse model which provides proof-of-principle for in vivo protein rescue using existing pharmacoperones.


Asunto(s)
Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Proteínas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Transporte de Proteínas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química
20.
Proc Natl Acad Sci U S A ; 110(52): 21030-5, 2013 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-24324164

RESUMEN

Mutations in receptors, ion channels, and enzymes are frequently recognized by the cellular quality control system as misfolded and retained in the endoplasmic reticulum (ER) or otherwise misrouted. Retention results in loss of function at the normal site of biological activity and disease. Pharmacoperones are target-specific small molecules that diffuse into cells and serve as folding templates that enable mutant proteins to pass the criteria of the quality control system and route to their physiologic site of action. Pharmacoperones of the gonadotropin releasing hormone receptor (GnRHR) have efficacy in cell culture systems, and their cellular and biochemical mechanisms of action are known. Here, we show the efficacy of a pharmacoperone drug in a small animal model, a knock-in mouse, expressing a mutant GnRHR. This recessive mutation (GnRHR E(90)K) causes hypogonadotropic hypogonadism (failed puberty associated with low or apulsatile luteinizing hormone) in both humans and in the mouse model described. We find that pulsatile pharmacoperone therapy restores E(90)K from ER retention to the plasma membrane, concurrently with responsiveness to the endogenous natural ligand, gonadotropin releasing hormone, and an agonist that is specific for the mutant. Spermatogenesis, proteins associated with steroid transport and steroidogenesis, and androgen levels were restored in mutant male mice following pharmacoperone therapy. These results show the efficacy of pharmacoperone therapy in vivo by using physiological, molecular, genetic, endocrine and biochemical markers and optimization of pulsatile administration. We expect that this newly appreciated approach of protein rescue will benefit other disorders sharing pathologies based on misrouting of misfolded protein mutants.


Asunto(s)
Hipogonadismo/tratamiento farmacológico , Chaperonas Moleculares/farmacología , Pliegue de Proteína/efectos de los fármacos , Deficiencias en la Proteostasis/genética , Receptores LHRH/genética , Testículo/fisiología , Animales , Biomarcadores/metabolismo , Retículo Endoplásmico/metabolismo , Técnicas de Sustitución del Gen , Hipogonadismo/genética , Masculino , Ratones , Chaperonas Moleculares/uso terapéutico , Mutación/genética , Testículo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA