Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(28): 12849-12857, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38943660

RESUMEN

We report on the detailed structural analysis of a series of 11 new quaternary rare earths containing thiosilicates, AkRE2Si2S8 (Ak = Ca and Sr; RE = La, Ce, Pr, Nd, Sm, Gd, and Tb), synthesized using the flux-assisted boron chalcogen mixture method. High quality crystals were grown and used to determine their crystal structures by single crystal X-ray diffraction. All members of the AkRE2Si2S8 series crystallize in the trigonal crystal system with space group R3̅c (space group no. 167). Polycrystalline powders were used for physical property measurements, including magnetic susceptibility, diffuse reflectance in the UV-visible range, and scintillation. Magnetic measurements indicated that CaRE2Si2S8 (RE = Nd and Tb) exhibits paramagnetic behavior with a slightly negative Weiss constant. The band gaps of the materials were determined from diffuse reflectance data, and optical band gaps were estimated to be 2.5(1) and 2.9(1) eV for CaCe2Si2S8 and CaGd2Si2S8, respectively. CaCe2Si2S8, CaTb2Si2S8, and SrCe2Si2S8 exhibited intense green luminescence upon irradiation with 375 nm ultraviolet light and, furthermore, scintillated when exposed to X-rays. Radioluminescence measurements of CaCe2Si2S8 powder revealed green emission with an intensity approximately 14% of that emitted by bismuth germanium oxide powder.

2.
Inorg Chem ; 63(24): 11053-11062, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38823026

RESUMEN

Three novel bismuth-organic compounds, with the general formula [Bi2(HPDC)2(PDC)2]·(arene)·2H2O (H2PDC = 2,6-pyridinedicarboxylic acid; arene = pyrene, naphthalene, and azulene), that consist of neutral dinuclear Bi-pyridinedicarboxylate complexes and outer coordination sphere arene molecules were synthesized and structurally characterized. The structures of all three phases exhibit strong π-π stacking interactions between the Bi-bound PDC/HPDC and outer sphere organic molecules; these interactions effectively sandwich the arene molecules between bismuth complexes and thereby prevent molecular vibrations. Upon UV irradiation, the compounds containing pyrene and naphthalene displayed red and green emission, respectively, with quantum yields of 1.3(2) and 30.8(4)%. The emission was found to originate from the T1 → S0 transition of the corresponding arene and result in phosphorescence characteristic of the arene employed. By comparison, the azulene-containing compound displayed very weak blue-purple phosphorescence of unknown origin and is a rare example of T2 → S0 emission from azulene. The pyrene- and naphthalene-containing compounds both display radioluminescence, with intensities of 11 and 38% relative to bismuth germanate, respectively. Collectively, these results provide further insights into the structure-property relationships that underpin luminescence from Bi-based materials and highlight the utility of Bi-organic molecules in the realization of organic emission.

3.
Sensors (Basel) ; 24(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38610351

RESUMEN

Proton radiography is a promising development in proton therapy, and researchers are currently exploring optimal detector materials to construct proton radiography detector arrays. High-density glass scintillators may improve integrating-mode proton radiography detectors by increasing spatial resolution and decreasing detector thickness. We evaluated several new scintillators, activated with europium or terbium, with proton response measurements and Monte Carlo simulations, characterizing relative luminosity, ionization quenching, and proton radiograph spatial resolution. We applied a correction based on Birks's analytical model for ionization quenching. The data demonstrate increased relative luminosity with increased activation element concentration, and higher relative luminosity for samples activated with europium. An increased glass density enables more compact detector geometries and higher spatial resolution. These findings suggest that a tungsten and gadolinium oxide-based glass activated with 4% europium is an ideal scintillator for testing in a full-size proton radiography detector.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...