Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 168: 330-338, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31348898

RESUMEN

The signaling mechanisms of the angiotensin II type 2 receptor (AT2R), a heptahelical receptor, have not yet been clearly and completely defined. In the present contribution, we set out to identify the molecular determinants involved in AT2R activation. Although AT2R has not been shown to engage Gq/11, G12, Gi2, and ß-arrestin (ßarr) pathways as does the AT1R upon angiotensin II (AngII) stimulation, the atypical positioning of helix VIII in the recently published AT2R structure may play a role in the receptor's capacity to couple to downstream effectors. In the AT2R structure, helix VIII points inwards and towards intracellular loop 3 (ICL3) to form tertiary interactions with transmembrane domain 6 (TM6), possibly impeding access to signaling effectors. On the other hand, in most class A GPCRs, helix VIII is found to be engaged in tertiary interactions with ICL1 and away from the effector binding site. Upon closer examination of the AT2R structure, we found that the residues contained within intracellular loop 1 (ICL1) may be involved in driving this unusual conformation of helix VIII. To explore this hypothesis, we designed a series of AT1R/AT2R receptor chimeras to validate the roles of ICL1 and helix VIII in AT2R signaling. Substituting the AT1R ICL1 into AT2R led to a mutant receptor that coupled to Gi2. The substitution of the helix VIII and C-terminal domains of AT2R into the AT1R backbone led to a mutant receptor that retained AT1R-like signaling properties. These results suggest that the C-terminal portion of AT2R is compatible with canonical GPCR signaling and that ICL1 of AT2R is involved in repositioning helix VIII, which impedes engagement of classical GPCR effectors such as G proteins or ßarrs.


Asunto(s)
Secuencias Hélice-Asa-Hélice/fisiología , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Receptor de Angiotensina Tipo 2/química , Receptor de Angiotensina Tipo 2/metabolismo , Angiotensina II/farmacología , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Relación Dosis-Respuesta a Droga , Células HEK293 , Secuencias Hélice-Asa-Hélice/efectos de los fármacos , Humanos , Membranas Intracelulares/efectos de los fármacos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptor de Angiotensina Tipo 2/agonistas
2.
Int J Endocrinol ; 2018: 4315413, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29971102

RESUMEN

Polycystic ovary syndrome (PCOS) is a common and significant condition associated with hyperandrogenism, infertility, low quality of life, and metabolic comorbidities. One possible explanation of PCOS development is cellular dysfunction induced by nonesterified fatty acids (NEFAs), that is, lipotoxicity, which could explain both the hyperandrogenemia and insulin resistance that characterize women with PCOS. The literature suggests that androgen biosynthesis may be induced by overexposure of androgen-secreting tissues to NEFA and/or defective NEFA metabolism, leading to lipotoxic effects. Indeed, lipotoxicity could trigger androgenic hyperresponsiveness to insulin, LH, and ACTH. In most PCOS women, lipotoxicity also causes insulin resistance, inducing compensatory hyperinsulinemia, and may thus further increase hyperandrogenemia. Many approaches aimed at insulin sensitization also reduce lipotoxicity and have been shown to treat PCOS hyperandrogenemia. Furthermore, our group and others found that angiotensin II type 2 receptor (AT2R) activation is able to improve lipotoxicity. We provided evidence, using C21/M24, that AT2R activation improves adipocytes' size and insulin sensitivity in an insulin-resistant rat model, as well as androgen levels in a PCOS obese rat model. Taken together, these findings point toward the important role of lipotoxicity in PCOS development and of the RAS system as a new target for the treatment of PCOS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...