Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38764311

RESUMEN

BACKGROUND: The rate and magnitude of skeletal muscle wasting after severe spinal cord injury (SCI) exceeds most other disuse conditions. Assessing the time course of molecular changes can provide insight into the progression of muscle wasting post-SCI. The goals of this study were (1) to identify potential targets that may prevent the pathologic features of SCI in soleus muscles and (2) to establish therapeutic windows for treating these pathologic changes. METHODS: Four-month-old Sprague-Dawley male rats received T9 laminectomy (SHAM surgery) or severe contusion SCI. Hindlimb locomotor function was assessed weekly, with soleus muscles obtained 1 week, 2 weeks, 1 month and 3 months post-surgery (n = 6-7 per group per timepoint). RNA was extracted from muscles for bulk RNA-sequencing analysis (n = 3-5 per group per timepoint). Differentially expressed genes (DEGs) were evaluated between age-matched SHAM and SCI animals. Myofiber size, muscle fibre type and fibrosis were assessed on contralateral muscles. RESULTS: SCI produced immediate and persistent hindlimb paralysis, with Basso-Beattie-Bresnahan locomotor scores remaining below 7 throughout the study, contributing to a progressive 25-50% lower soleus mass and myofiber atrophy versus SHAM (P < 0.05 at all timepoints). Transcriptional comparisons of SCI versus SHAM resulted in 184 DEGs (1 week), 436 DEGs (2 weeks), 133 DEGs (1 month) and 1200 DEGs (3 months). Upregulated atrophy-related genes included those associated with cell senescence, nuclear factor kappa B, ubiquitin proteasome and unfolded protein response pathways, along with upregulated genes that negatively influence muscle growth through the transforming growth factor beta pathway and inhibition of insulin-like growth factor-I/Akt/mechanistic target of rapamycin and p38/mitogen-activated protein kinase signalling. Genes associated with extracellular matrix (ECM), including collagens, collagen crosslinkers, proteoglycans and those regulating ECM integrity, were enriched within upregulated DEGs at 1 week but subsequently downregulated at 2 weeks and 3 months and were accompanied by >50% higher ECM areas and hydroxyproline levels in SCI muscles (P < 0.05). Myofiber remodelling genes were enriched in upregulated DEGs at 2 weeks and 1 month and were downregulated at 3 months. Genes that regulate neuromuscular junction remodelling were evident in muscles post-SCI, along with slow-to-fast fibre-type shifts: 1 week and 2 weeks SCI muscles were composed of 90% myosin heavy chain (MHC) type I fibres, which decreased to only 16% at 3 months and were accompanied by 50% fibres containing MHC IIX (P < 0.05). Metabolism genes were enriched in upregulated DEGs at 1 month and were further enriched at 3 months. CONCLUSIONS: Our results substantiate many known pathologic features of SCI-induced wasting in rat skeletal muscle and identify a progressive and dynamic transcriptional landscape within the post-SCI soleus. Future studies are warranted to consider these therapeutic treatment windows when countering SCI muscle pathology.

2.
Med Sci Sports Exerc ; 55(5): 813-823, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36728986

RESUMEN

INTRODUCTION: Spinal cord injury (SCI) produces diminished bone perfusion and bone loss in the paralyzed limbs. Activity-based physical therapy (ABPT) modalities that mobilize and/or reload the paralyzed limbs (e.g., bodyweight-supported treadmill training (BWSTT) and passive-isokinetic bicycle training) transiently promote lower-extremity blood flow (BF). However, it remains unknown whether ABPT alter resting-state bone BF or improve skeletal integrity after SCI. METHODS: Four-month-old male Sprague-Dawley rats received T 9 laminectomy alone (SHAM; n = 13) or T 9 laminectomy with severe contusion SCI ( n = 48). On postsurgery day 7, SCI rats were stratified to undergo 3 wk of no ABPT, quadrupedal (q)BWSTT, or passive-isokinetic hindlimb bicycle training. Both ABPT regimens involved two 20-min bouts per day, performed 5 d·wk -1 . We assessed locomotor recovery, bone turnover with serum assays and histomorphometry, distal femur bone microstructure using in vivo microcomputed tomography, and femur and tibia resting-state bone BF after in vivo microsphere infusion. RESULTS: All SCI animals displayed immediate hindlimb paralysis. SCI without ABPT exhibited uncoupled bone turnover and progressive cancellous and cortical bone loss. qBWSTT did not prevent these deficits. In comparison, hindlimb bicycle training suppressed surface-level bone resorption indices without suppressing bone formation indices and produced robust cancellous and cortical bone recovery at the distal femur. No bone BF deficits existed 4 wk after SCI, and neither qBWSTT nor bicycle altered resting-state bone perfusion or locomotor recovery. However, proximal tibia BF correlated with several histomorphometry-derived bone formation and resorption indices at this skeletal site across SCI groups. CONCLUSIONS: These data indicate that passive-isokinetic bicycle training reversed cancellous and cortical bone loss after severe SCI through antiresorptive and/or bone anabolic actions, independent of locomotor recovery or changes in resting-state bone perfusion.


Asunto(s)
Huesos , Traumatismos de la Médula Espinal , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Microtomografía por Rayos X , Traumatismos de la Médula Espinal/terapia , Perfusión
3.
J Appl Physiol (1985) ; 131(4): 1288-1299, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34473574

RESUMEN

Diminished bone perfusion develops in response to disuse and has been proposed as a mechanism underlying bone loss. Bone blood flow (BF) has not been investigated within the unique context of severe contusion spinal cord injury (SCI), a condition that produces neurogenic bone loss that is precipitated by disuse and other physiological consequences of central nervous system injury. Herein, 4-mo-old male Sprague-Dawley rats received T9 laminectomy (SHAM) or laminectomy with severe contusion SCI (n = 20/group). Time course assessments of hindlimb bone microstructure and bone perfusion were performed in vivo at 1- and 2-wk postsurgery via microcomputed tomography (microCT) and intracardiac microsphere infusion, respectively, and bone turnover indices were determined via histomorphometry. Both groups exhibited cancellous bone loss beginning in the initial postsurgical week, with cancellous and cortical bone deficits progressing only in SCI thereafter. Trabecular bone deterioration coincided with uncoupled bone turnover after SCI, as indicated by signs of ongoing osteoclast-mediated bone resorption and a near-complete absence of osteoblasts and cancellous bone formation. Bone BF was not different between groups at 1 wk, when both groups displayed bone loss. In comparison, femur and tibia perfusion was 30%-40% lower in SCI versus SHAM at 2 wk, with the most pronounced regional BF deficits occurring at the distal femur. Significant associations existed between distal femur BF and cancellous and cortical bone loss indices. Our data provide the first direct evidence indicating that bone BF deficits develop in response to SCI and temporally coincide with suppressed bone formation and with cancellous and cortical bone deterioration.NEW & NOTEWORTHY We provide the first direct evidence indicating femur and tibia blood flow (BF) deficits exist in conscious (awake) rats after severe contusion spinal cord injury (SCI), with the distal femur displaying the largest BF deficits. Reduced bone perfusion temporally coincided with unopposed bone resorption, as indicated by ongoing osteoclast-mediated bone resorption and a near absence of surface-level bone formation indices, which resulted in severe cancellous and cortical microstructural deterioration after SCI.


Asunto(s)
Osteogénesis , Traumatismos de la Médula Espinal , Animales , Huesos , Masculino , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/complicaciones , Microtomografía por Rayos X
4.
Physiol Rep ; 8(3): e14357, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32026570

RESUMEN

To determine whether muscle disuse after a spinal cord injury (SCI) produces elevated markers of cellular senescence and induces markers of the senescence-associated secretory phenotypes (SASPs) in paralyzed skeletal muscle. Four-month-old male Sprague-Dawley rats received a moderate-severe (250 kiloDyne) T-9 contusion SCI or Sham surgery and were monitored over 2 weeks, and 1-, 2-, or 3 months. Animals were sacrificed via isoflurane overdose and terminal exsanguination and the soleus was carefully excised and snap frozen. Protein expression of senescence markers p53, p27, and p16 was determined from whole soleus lysates using Western immunoblotting and RT-qPCR was used to determine the soleus gene expression of IL-1α, IL-1ß, IL-6, CXCL1, and TNFα. SCI soleus muscle displayed 2- to 3-fold higher total p53 protein expression at 2 weeks, and at 1 and 2 months when compared with Sham. p27 expression was stable across all groups and timepoints. p16 protein expression was lower at 3 months in SCI versus Sham, but not earlier timepoints. Gene expression was relatively stable between groups at 2 weeks. There were Surgery x Time interaction effects for IL-6 and TNFα mRNA expression but not for IL-1α, IL-1ß, or CXCL1. There were no main effects for time or surgery for IL-1α, IL-1ß, or CXCL1, but targeted t tests showed reductions in IL-1α and CXCL1 in SCI animals compared to Sham at 3 months and IL-1ß was reduced in SCI animals compared to Sham animals at the 2-month timepoint. The elevation in p53 does not appear consistent with the induction of SASP because mRNA expression of cytokines associated with senescence was not uniformly upregulated and, in some instances, was downregulated in the early chronic phase of SCI.


Asunto(s)
Músculo Esquelético/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Contusiones/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína p53 Supresora de Tumor/genética , Regulación hacia Arriba
5.
J Neurosci Res ; 98(5): 843-868, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31797423

RESUMEN

Loading and testosterone may influence musculoskeletal recovery after spinal cord injury (SCI). Our objectives were to determine (a) the acute effects of bodyweight-supported treadmill training (TM) on hindlimb cancellous bone microstructure and muscle mass in adult rats after severe contusion SCI and (b) whether longer-term TM with adjuvant testosterone enanthate (TE) delivers musculoskeletal benefit. In Study 1, TM (40 min/day, 5 days/week, beginning 1 week postsurgery) did not prevent SCI-induced hindlimb cancellous bone loss after 3 weeks. In Study 2, TM did not attenuate SCI-induced plantar flexor muscles atrophy nor improve locomotor recovery after 4 weeks. In our main study, SCI produced extensive distal femur and proximal tibia cancellous bone deficits, a deleterious slow-to-fast fiber-type transition in soleus, lower muscle fiber cross-sectional area (fCSA), impaired muscle force production, and levator ani/bulbocavernosus (LABC) muscle atrophy after 8 weeks. TE alone (7.0 mg/week) suppressed bone resorption, attenuated cancellous bone loss, constrained the soleus fiber-type transition, and prevented LABC atrophy. In comparison, TE+TM concomitantly suppressed bone resorption and stimulated bone formation after SCI, produced near-complete cancellous bone preservation, prevented the soleus fiber-type transition, attenuated soleus fCSA atrophy, maintained soleus force production, and increased LABC mass. 75% of SCI+TE+TM animals recovered voluntary over-ground hindlimb stepping, while no SCI and only 20% of SCI+TE animals regained stepping ability. Positive associations between testosterone and locomotor function suggest that TE influenced locomotor recovery. In conclusion, short-term TM alone did not improve bone, muscle, or locomotor recovery in adult rats after severe SCI, while longer-term TE+TM provided more comprehensive musculoskeletal benefit than TE alone.


Asunto(s)
Hueso Esponjoso/fisiopatología , Músculo Esquelético/fisiopatología , Condicionamiento Físico Animal/fisiología , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/rehabilitación , Testosterona/uso terapéutico , Animales , Hueso Esponjoso/efectos de los fármacos , Quimioterapia Combinada , Masculino , Músculo Esquelético/efectos de los fármacos , Ratas , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/fisiopatología , Testosterona/administración & dosificación
6.
Calcif Tissue Int ; 104(1): 79-91, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30218117

RESUMEN

To elucidate mechanisms of bone loss after spinal cord injury (SCI), we evaluated the time-course of cancellous and cortical bone microarchitectural deterioration via microcomputed tomography, measured histomorphometric and circulating bone turnover indices, and characterized the development of whole bone mechanical deficits in a clinically relevant experimental SCI model. 16-weeks-old male Sprague-Dawley rats received T9 laminectomy (SHAM, n = 50) or moderate-severe contusion SCI (n = 52). Outcomes were assessed at 2-weeks, 1-month, 2-months, and 3-months post-surgery. SCI produced immediate sublesional paralysis and persistent hindlimb locomotor impairment. Higher circulating tartrate-resistant acid phosphatase 5b (bone resorption marker) and lower osteoblast bone surface and histomorphometric cancellous bone formation indices were present in SCI animals at 2-weeks post-surgery, suggesting uncoupled cancellous bone turnover. Distal femoral and proximal tibial cancellous bone volume, trabecular thickness, and trabecular number were markedly lower after SCI, with the residual cancellous network exhibiting less trabecular connectivity. Periosteal bone formation indices were lower at 2-weeks and 1-month post-SCI, preceding femoral cortical bone loss and the development of bone mechanical deficits at the distal femur and femoral diaphysis. SCI animals also exhibited lower serum testosterone than SHAM, until 2-months post-surgery, and lower serum leptin throughout. Our moderate-severe contusion SCI model displayed rapid cancellous bone deterioration and more gradual cortical bone loss and development of whole bone mechanical deficits, which likely resulted from a temporal uncoupling of bone turnover, similar to the sequalae observed in the motor-complete SCI population. Low testosterone and/or leptin may contribute to the molecular mechanisms underlying bone deterioration after SCI.


Asunto(s)
Remodelación Ósea/fisiología , Resorción Ósea/metabolismo , Osteogénesis/fisiología , Traumatismos de la Médula Espinal/metabolismo , Animales , Densidad Ósea/fisiología , Enfermedades Óseas Metabólicas/metabolismo , Hueso Cortical/metabolismo , Masculino , Ratas Sprague-Dawley
7.
J Neuroendocrinol ; 30(11): e12646, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30246441

RESUMEN

We recently showed that male rats exhibit lower hypophagia and body weight loss compared to female rats following central leptin delivery, suggesting a role for oestradiol in leptin responsiveness. Accordingly, we delivered Ob (leptin) or GFP (control) gene into the brain of male rats that were simultaneously treated with oestradiol or vehicle. In a reciprocal approach, we compared oestradiol-deficient (OVX) with intact females (sham) that received leptin or control vector. Changes in food intake), body weight and body composition were examined. In males, oestradiol and leptin resulted in lower cumulative food intake (15%) and endpoint body weight (5%), although rats receiving dual treatment (oestradiol-leptin) ate 28% less and weighed 22% less than vehicle-control. Changes in food intake were unique to each treatment, with a rapid decrease in vehicle-leptin followed by gradual renormalisation. By contrast, hypophagia in oestradiol-control was of lower amplitude and sporadic. Leptin selectively targeted fat mass and endpoint abdominal fat mass was 65%-80% lower compared to their respective control groups. In females, both leptin groups had lower body weight (endpoint values 20% lower than control groups) with the highest extent in sham animals (endpoint value was 28% less in sham-leptin than in sham-control). OVX rats rapidly started regaining their lost body weight reminiscent of the pattern in males. Leptin rapidly and robustly reduced fat mass with endpoint values 30%-35% less than control treated animals. It appears that leptin and oestradiol decreased food intake and body weight via different mechanisms, with the pattern of oestradiol-leptin being reminiscent of that observed in females and the pattern of OVX-leptin reminiscent of that observed in males. Oestrogen status did not influence initial fat mass loss by leptin. It can be concluded that oestradiol modulates the long-term response to central leptin overexpression, although its actions on energy homeostasis are additive and independent of those of leptin.


Asunto(s)
Tejido Adiposo/fisiología , Ingestión de Alimentos/fisiología , Estradiol/fisiología , Hipotálamo/fisiología , Leptina/fisiología , Tejido Adiposo/efectos de los fármacos , Animales , Depresores del Apetito/administración & dosificación , Ingestión de Alimentos/efectos de los fármacos , Estradiol/administración & dosificación , Estrógenos/administración & dosificación , Estrógenos/fisiología , Femenino , Leptina/administración & dosificación , Leptina/genética , Masculino , Ovariectomía , Ratas Sprague-Dawley , Ratas Transgénicas , Caracteres Sexuales
8.
PLoS One ; 13(3): e0194440, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29579075

RESUMEN

Sclerostin is a circulating osteocyte-derived glycoprotein that negatively regulates Wnt-signaling after binding the LRP5/LRP6 co-receptors. Pharmacologic sclerostin inhibition produces bone anabolic effects after spinal cord injury (SCI), however, the effects of sclerostin-antibody (Scl-Ab) on muscle morphology remain unknown. In comparison, androgen administration produces bone antiresorptive effects after SCI and some, but not all, studies have reported that testosterone treatment ameliorates skeletal muscle atrophy in this context. Our purposes were to determine whether Scl-Ab prevents hindlimb muscle loss after SCI and compare the effects of Scl-Ab to testosterone enanthate (TE), an agent with known myotrophic effects. Male Sprague-Dawley rats aged 5 months received: (A) SHAM surgery (T8 laminectomy), (B) moderate-severe contusion SCI, (C) SCI+TE (7.0 mg/wk, im), or (D) SCI+Scl-Ab (25 mg/kg, twice weekly, sc). Twenty-one days post-injury, SCI animals exhibited a 31% lower soleus mass in comparison to SHAM, accompanied by >50% lower soleus muscle fiber cross-sectional area (fCSA) (p<0.01 for all fiber types). Scl-Ab did not prevent soleus atrophy, consistent with the relatively low circulating sclerostin concentrations and with the 91-99% lower LRP5/LRP6 gene expressions in soleus versus tibia (p<0.001), a tissue with known anabolic responsiveness to Scl-Ab. In comparison, TE partially prevented soleus atrophy and increased levator ani/bulbocavernosus (LABC) mass by 30-40% (p<0.001 vs all groups). The differing myotrophic responsiveness coincided with a 3-fold higher androgen receptor gene expression in LABC versus soleus (p<0.01). This study provides the first direct evidence that Scl-Ab does not prevent soleus muscle atrophy in rodents after SCI and suggests that variable myotrophic responses in rodent muscles after androgen administration are influenced by androgen receptor expression.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Testosterona/farmacología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Marcadores Genéticos , Masculino , Músculo Esquelético/patología , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Atrofia Muscular/patología , Ratas , Ratas Sprague-Dawley , Receptores Androgénicos/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología
9.
J Neurotrauma ; 34(21): 2972-2981, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28338402

RESUMEN

We have reported that testosterone-enanthate (TE) prevents the musculoskeletal decline occurring acutely after spinal cord injury (SCI), but results in a near doubling of prostate mass. Our purpose was to test the hypothesis that administration of TE plus finasteride (FIN; type II 5α-reductase inhibitor) would prevent the chronic musculoskeletal deficits in our rodent severe contusion SCI model, without inducing prostate enlargement. Forty-three 16-week-old male Sprague-Dawley rats received: 1) SHAM surgery (T9 laminectomy); 2) severe (250 kdyne) contusion SCI; 3) SCI+TE (7.0 mg/week, intramuscular); or 4) SCI+TE+FIN (5 mg/kg/day, subcutaneous). At 8 weeks post-surgery, SCI animals exhibited reduced serum testosterone and levator ani/bulbocavernosus (LABC) muscle mass, effects that were prevented by TE. Cancellous and cortical (periosteal) bone turnover (assessed by histomorphometry) were elevated post-SCI, resulting in reduced distal femur cancellous and cortical bone mass (assessed by microcomputed tomography). TE treatment normalized cancellous and cortical bone turnover and maintained cancellous bone mass at the level of SHAM animals, but produced prostate enlargement. FIN coadministration did not inhibit the TE-induced musculoskeletal effects, but prevented prostate growth. Neither drug regimen prevented SCI-induced cortical bone loss, although no differences in whole bone strength were present among groups. Our findings indicate that TE+FIN prevented the chronic cancellous bone deficits and LABC muscle loss in SCI animals without inducing prostate enlargement, which provides a rationale for the inclusion of TE+FIN in multimodal therapeutic interventions intended to alleviate the musculoskeletal decline post-SCI.


Asunto(s)
Remodelación Ósea/efectos de los fármacos , Finasterida/farmacología , Próstata/efectos de los fármacos , Traumatismos de la Médula Espinal/complicaciones , Testosterona/análogos & derivados , Inhibidores de 5-alfa-Reductasa/farmacología , Andrógenos/farmacología , Animales , Resorción Ósea/etiología , Resorción Ósea/prevención & control , Modelos Animales de Enfermedad , Masculino , Músculo Esquelético/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Testosterona/farmacología
10.
J Am Med Dir Assoc ; 18(4): 366.e17-366.e24, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28214238

RESUMEN

OBJECTIVES: Assess the prevalence of hypogonadism in older male Veterans by comparing direct measurements of total testosterone (T) and bioavailable testosterone (BioT) versus indirect BioT values derived from existing and newly developed regression analyses. DESIGN: Cohort study. SETTING: Malcom Randall VA Medical Center, Gainesville, FL. PARTICIPANTS: Community-dwelling male Veterans aged 60 and older (n = 203). MEASUREMENTS: Total T, BioT, albumin, sex hormone-binding globulin (SHBG), and body mass index were evaluated. Blood values were assessed via liquid chromatography-tandem mass spectrometry (LC-MS/MS) and clinical or commercially available immunoassays to compare accuracy among assessment techniques. Existing and newly developed multiple regression analyses were evaluated to assess accuracy in predicting BioT. RESULTS: Total T was 13.80 ± 6.25 nmol/L (398 ± 180 ng/dL) and was low (≤10.4 nmol/L or ≤300 ng/dL) in 34% of participants. SHBG was 58 ± 35 nmol/L and elevated (≥62 nmol/L) in 36% of participants. BioT was 1.94 ± 0.97 nmol/L (56 ± 28 ng/dL), with 72% of participants below the clinical cutoff (≤2.43 nmol/L or ≤70 ng/dL). Albumin was within the normal clinical range. Total T and BioT measured via immunoassay and LC-MS/MS were moderately to highly correlated, with no differences between assessment methods. Several existing predictive equations overestimated BioT by 74% to 166% within our cohort (P < .001). A newly developed regression model that included total T, SHBG, albumin, and age more accurately predicted BioT, with values correlated (r = 0.508, P < .001) and comparable to LC-MS/MS. CONCLUSION: In our cohort, the prevalence of low total T was higher and low BioT was markedly higher than reported in the general age-matched population, indicating a greater incidence of hypogonadism in older male Veterans. In addition, existing empiric formulae, derived from other populations produced BioT values that were considerably greater than those directly measured, whereas our newly developed regression analysis provides improved predictive capabilities for older male Veterans.


Asunto(s)
Testosterona/sangre , Testosterona/deficiencia , Veteranos , Anciano , Estudios de Cohortes , Humanos , Masculino , Prevalencia , Espectrometría de Masas en Tándem
11.
J Appl Physiol (1985) ; 121(3): 792-805, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27539493

RESUMEN

The influence of the aromatase enzyme on the chronic fat-sparing effects of testosterone requires further elucidation. Our purpose was to determine whether chronic anastrozole (AN, an aromatase inhibitor) treatment alters testosterone-mediated lipolytic/lipogenic gene expression in visceral fat. Ten-month-old Fischer 344 rats (n = 6/group) were subjected to sham surgery (SHAM), orchiectomy (ORX), ORX + treatment with testosterone enanthate (TEST, 7.0 mg/wk), or ORX + TEST + AN (0.5 mg/day), with drug treatment beginning 14 days postsurgery. At day 42, ORX animals exhibited nearly undetectable serum testosterone and 29% higher retroperitoneal fat mass than SHAM animals (P < 0.001). TEST produced a ∼380-415% higher serum testosterone than SHAM (P < 0.001) and completely prevented ORX-induced visceral fat gain (P < 0.001). Retroperitoneal fat was 21% and 16% lower in ORX + TEST than SHAM (P < 0.001) and ORX + TEST + AN (P = 0.007) animals, while serum estradiol (E2) was 62% (P = 0.024) and 87% (P = 0.010) higher, respectively. ORX stimulated lipogenic-related gene expression in visceral fat, demonstrated by ∼84-154% higher sterol regulatory element-binding protein-1 (SREBP-1, P = 0.023), fatty acid synthase (P = 0.01), and LPL (P < 0.001) mRNA than SHAM animals, effects that were completely prevented in ORX + TEST animals (P < 0.01 vs. ORX for all). Fatty acid synthase (P = 0.061, trend) and LPL (P = 0.043) mRNA levels were lower in ORX + TEST + AN than ORX animals and not different from SHAM animals but remained higher than in ORX + TEST animals (P < 0.05). In contrast, the ORX-induced elevation in SREBP-1 mRNA was not prevented by TEST + AN, with SREBP-1 expression remaining ∼117-171% higher than in SHAM and ORX + TEST animals (P < 0.01). Across groups, visceral fat mass and lipogenic-related gene expression were negatively associated with serum testosterone, but not E2 Aromatase inhibition constrains testosterone-induced visceral fat loss and the downregulation of key lipogenic genes at the mRNA level, indicating that E2 influences the visceral fat-sparing effects of testosterone.

12.
J Bone Miner Res ; 30(4): 681-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25359699

RESUMEN

Spinal cord injury (SCI) results in rapid and extensive sublesional bone loss. Sclerostin, an osteocyte-derived glycoprotein that negatively regulates intraskeletal Wnt signaling, is elevated after SCI and may represent a mechanism underlying this excessive bone loss. However, it remains unknown whether pharmacologic sclerostin inhibition ameliorates bone loss subsequent to SCI. Our primary purposes were to determine whether a sclerostin antibody (Scl-Ab) prevents hindlimb cancellous bone loss in a rodent SCI model and to compare the effects of a Scl-Ab to that of testosterone-enanthate (TE), an agent that we have previously shown prevents SCI-induced bone loss. Fifty-five (n = 11-19/group) skeletally mature male Sprague-Dawley rats were randomized to receive: (A) SHAM surgery (T8 laminectomy), (B) moderate-severe (250 kilodyne) SCI, (C) 250 kilodyne SCI + TE (7.0 mg/wk, im), or (D) 250 kilodyne SCI + Scl-Ab (25 mg/kg, twice weekly, sc) for 3 weeks. Twenty-one days post-injury, SCI animals exhibited reduced hindlimb cancellous bone volume at the proximal tibia (via µCT and histomorphometry) and distal femur (via µCT), characterized by reduced trabecular number and thickness. SCI also reduced trabecular connectivity and platelike trabecular structures, indicating diminished structural integrity of the remaining cancellous network, and produced deficits in cortical bone (femoral diaphysis) strength. Scl-Ab and TE both prevented SCI-induced cancellous bone loss, albeit via differing mechanisms. Specifically, Scl-Ab increased osteoblast surface and bone formation, indicating direct bone anabolic effects, whereas TE reduced osteoclast surface with minimal effect on bone formation, indicating antiresorptive effects. The deleterious microarchitectural alterations in the trabecular network were also prevented in SCI + Scl-Ab and SCI + TE animals, whereas only Scl-Ab completely prevented the reduction in cortical bone strength. Our findings provide the first evidence indicating that sclerostin inhibition represents a viable treatment to prevent SCI-induced cancellous and cortical bone deficits and provides preliminary rationale for future clinical trials focused on evaluating whether Scl-Ab prevents osteoporosis in the SCI population.


Asunto(s)
Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Osteoporosis/prevención & control , Traumatismos de la Médula Espinal/complicaciones , Animales , Biomarcadores/sangre , Marcadores Genéticos , Masculino , Osteoporosis/diagnóstico por imagen , Osteoporosis/etiología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/fisiopatología , Testosterona/sangre , Microtomografía por Rayos X
13.
Clin Interv Aging ; 9: 1327-33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25143719

RESUMEN

Serum concentrations of neuroactive androgens decline in older men and, in some studies, low testosterone is associated with decreased cognitive function and incidence of depression. Existing studies evaluating the effect of testosterone administration on cognition in older men have been largely inconclusive, with some studies reporting minor to moderate cognitive benefit, while others indicate no cognitive effect. Our objective was to assess the cognitive effects of treating older hypogonadal men for 1 year with a supraphysiological dose of testosterone, either alone or in combination with finasteride (a type II 5α-reductase inhibitor), in order to determine whether testosterone produces cognitive benefit and whether suppressed dihydrotestosterone influences cognition. Sixty men aged ≥ 60 years with a serum testosterone concentration of ≤ 300 ng/dL or bioavailable testosterone ≤ 70 ng/dL and no evidence of cognitive impairment received testosterone-enanthate (125 mg/week) versus vehicle, paired with finasteride (5 mg/day) versus placebo using a 2×2 factorial design. Testosterone caused a small decrease in depressive symptoms as assessed by the Geriatric Depression Scale and a moderate increase in visuospatial memory as assessed by performance on a recall trial of the Rey-Osterrieth Complex Figure Test. Finasteride caused a small increase in performance on the Benton Judgment of Line Orientation test. In total, major improvements in cognition were not observed either with testosterone or finasteride. Further studies are warranted to determine if testosterone replacement may improve cognition in other domains.


Asunto(s)
Inhibidores de 5-alfa-Reductasa/uso terapéutico , Andrógenos/uso terapéutico , Cognición/efectos de los fármacos , Finasterida/uso terapéutico , Hipogonadismo/tratamiento farmacológico , Testosterona/análogos & derivados , Anciano , Antropometría , Cromatografía Liquida , Ensayo de Inmunoadsorción Enzimática , Evaluación Geriátrica , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Fuerza Muscular/efectos de los fármacos , Testosterona/sangre , Testosterona/uso terapéutico , Resultado del Tratamiento
14.
Am J Physiol Endocrinol Metab ; 307(5): E456-61, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25074984

RESUMEN

Testosterone (T) stimulates erythropoiesis and regulates iron homeostasis. However, it remains unknown whether the (type II) 5α-reduction of T to dihydrotestosterone (DHT) mediates these androgenic effects, as it does in some other tissues. Our purpose was to determine whether inhibition of type II 5α-reductase (via finasteride) alters red blood cell (RBC) production and serum markers of iron homeostasis subsequent to testosterone-enanthate (TE) administration in older hypogonadal men. Sixty men aged ≥60 yr with serum T <300 ng/dl or bioavailable T <70 ng/dl received treatment with TE (125 mg/wk) vs. vehicle paired with finasteride (5 mg/day) vs. placebo using a 2 × 2 factorial design. Over the course of 12 mo, TE increased RBC count 9%, hematocrit 4%, and hemoglobin 8% while suppressing serum hepcidin 57% (P < 0.001 for all measurements). Most of the aforementioned changes occurred in the first 3 mo of treatment, and finasteride coadministration did not significantly alter any of these effects. TE also reduced serum ferritin 32% (P = 0.002) within 3 mo of treatment initiation without altering iron, transferrin, or transferrin saturation. We conclude that TE stimulates erythropoiesis and alters iron homeostasis independently of the type II 5α-reductase enzyme. These results demonstrate that elevated DHT is not required for androgen-mediated erythropoiesis or for alterations in iron homeostasis that would appear to support iron incorporation into RBCs.


Asunto(s)
Dihidrotestosterona/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Hierro/metabolismo , Testosterona/análogos & derivados , Anciano , Anciano de 80 o más Años , Método Doble Ciego , Interacciones Farmacológicas , Recuento de Eritrocitos , Ferritinas/sangre , Finasterida/farmacología , Humanos , Hierro/sangre , Masculino , Persona de Mediana Edad , Placebos , Testosterona/farmacología , Transferrina/análisis
15.
Steroids ; 87: 59-66, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24928725

RESUMEN

Androgens regulate body composition and skeletal muscle mass in males, but the molecular mechanisms are not fully understood. Recently, we demonstrated that trenbolone (a potent synthetic testosterone analogue that is not a substrate for 5-alpha reductase or for aromatase) induces myotrophic effects in skeletal muscle without causing prostate enlargement, which is in contrast to the known prostate enlarging effects of testosterone. These previous results suggest that the 5α-reduction of testosterone is not required for myotrophic action. We now report differential gene expression in response to testosterone versus trenbolone in the highly androgen-sensitive levator ani/bulbocavernosus (LABC) muscle complex of the adult rat after 6weeks of orchiectomy (ORX), using real time PCR. The ORX-induced expression of atrogenes (Muscle RING-finger protein-1 [MuRF1] and atrogin-1) was suppressed by both androgens, with trenbolone producing a greater suppression of atrogin-1 mRNA compared to testosterone. Both androgens elevated expression of anabolic genes (insulin-like growth factor-1 and mechano-growth factor) after ORX. ORX-induced increases in expression of glucocorticoid receptor (GR) mRNA were suppressed by trenbolone treatment, but not testosterone. In ORX animals, testosterone promoted WNT1-inducible-signaling pathway protein 2 (WISP-2) gene expression while trenbolone did not. Testosterone and trenbolone equally enhanced muscle regeneration as shown by increases in LABC mass and in protein expression of embryonic myosin by western blotting. In addition, testosterone increased WISP-2 protein levels. Together, these findings identify specific mechanisms by which testosterone and trenbolone may regulate skeletal muscle maintenance and growth.


Asunto(s)
Andrógenos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Músculos/efectos de los fármacos , Músculos/metabolismo , Testosterona/farmacología , Transcripción Genética/efectos de los fármacos , Acetato de Trembolona/farmacología , Animales , Peso Corporal/efectos de los fármacos , Proteínas CCN de Señalización Intercelular/metabolismo , Masculino , Músculos/patología , Músculos/fisiología , Atrofia Muscular/genética , Miosinas/metabolismo , Orquiectomía , Tamaño de los Órganos/efectos de los fármacos , Ratas , Receptores Androgénicos/genética , Receptores de Glucocorticoides/genética , Regeneración/efectos de los fármacos , Proteínas Represoras/metabolismo , Factores de Tiempo
16.
J Bone Miner Res ; 29(11): 2405-13, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24764121

RESUMEN

The influence of the aromatase enzyme in androgen-induced bone maintenance after skeletal maturity remains somewhat unclear. Our purpose was to determine whether aromatase activity is essential to androgen-induced bone maintenance. Ten-month-old male Fisher 344 rats (n = 73) were randomly assigned to receive Sham surgery, orchiectomy (ORX), ORX + anastrozole (AN; aromatase inhibitor), ORX + testosterone-enanthate (TE, 7.0 mg/wk), ORX + TE + AN, ORX + trenbolone-enanthate (TREN; nonaromatizable, nonestrogenic testosterone analogue; 1.0 mg/wk), or ORX + TREN + AN. ORX animals exhibited histomorphometric indices of high-turnover osteopenia and reduced cancellous bone volume compared with Shams. Both TE and TREN administration suppressed cancellous bone turnover similarly and fully prevented ORX-induced cancellous bone loss. TE- and TREN-treated animals also exhibited greater femoral neck shear strength than ORX animals. AN co-administration slightly inhibited the suppression of bone resorption in TE-treated animals but did not alter TE-induced suppression of bone formation or the osteogenic effects of this androgen. In TREN-treated animals, AN co-administration produced no discernible effects on cancellous bone turnover or bone volume. ORX animals also exhibited reduced levator ani/bulbocavernosus (LABC) muscle mass and elevated visceral adiposity. In contrast, TE and TREN produced potent myotrophic effects in the LABC muscle and maintained fat mass at the level of Shams. AN co-administration did not alter androgen-induced effects on muscle or fat. In conclusion, androgens are able to induce direct effects on musculoskeletal and adipose tissue, independent of aromatase activity.


Asunto(s)
Andrógenos/farmacología , Inhibidores de la Aromatasa/farmacología , Aromatasa , Nitrilos/farmacología , Testosterona/farmacología , Triazoles/farmacología , Anabolizantes/farmacología , Anastrozol , Animales , Heptanoatos/farmacología , Masculino , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Orquiectomía , Osteoporosis/tratamiento farmacológico , Osteoporosis/enzimología , Osteoporosis/patología , Ratas , Ratas Endogámicas F344 , Acetato de Trembolona/farmacología
17.
J Neurotrauma ; 31(9): 834-45, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24378197

RESUMEN

Androgen administration protects against musculoskeletal deficits in models of sex-steroid deficiency and injury/disuse. It remains unknown, however, whether testosterone prevents bone loss accompanying spinal cord injury (SCI), a condition that results in a near universal occurrence of osteoporosis. Our primary purpose was to determine whether testosterone-enanthate (TE) attenuates hindlimb bone loss in a rodent moderate/severe contusion SCI model. Forty (n=10/group), 14 week old male Sprague-Dawley rats were randomized to receive: (1) Sham surgery (T9 laminectomy), (2) moderate/severe (250 kdyne) SCI, (3) SCI+Low-dose TE (2.0 mg/week), or (4) SCI+High-dose TE (7.0 mg/week). Twenty-one days post-injury, SCI animals exhibited a 77-85% reduction in hindlimb cancellous bone volume at the distal femur (measured via µCT) and proximal tibia (measured via histomorphometry), characterized by a >70% reduction in trabecular number, 13-27% reduction in trabecular thickness, and increased trabecular separation. A 57% reduction in cancellous volumetric bone mineral density (vBMD) at the distal femur and a 20% reduction in vBMD at the femoral neck were also observed. TE dose dependently prevented hindlimb bone loss after SCI, with high-dose TE fully preserving cancellous bone structural characteristics and vBMD at all skeletal sites examined. Animals receiving SCI also exhibited a 35% reduction in hindlimb weight bearing (triceps surae) muscle mass and a 22% reduction in sublesional non-weight bearing (levator ani/bulbocavernosus [LABC]) muscle mass, and reduced prostate mass. Both TE doses fully preserved LABC mass, while only high-dose TE ameliorated hindlimb muscle losses. TE also dose dependently increased prostate mass. Our findings provide the first evidence indicating that high-dose TE fully prevents hindlimb cancellous bone loss and concomitantly ameliorates muscle loss after SCI, while low-dose TE produces much less profound musculoskeletal benefit. Testosterone-induced prostate enlargement, however, represents a potential barrier to the clinical implementation of high-dose TE as a means of preserving musculoskeletal tissue after SCI.


Asunto(s)
Andrógenos/administración & dosificación , Huesos/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Traumatismos de la Médula Espinal/complicaciones , Testosterona/administración & dosificación , Animales , Atrofia/prevención & control , Densidad Ósea/efectos de los fármacos , Huesos/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Masculino , Músculo Esquelético/patología , Próstata/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
18.
Am J Physiol Endocrinol Metab ; 306(4): E433-42, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24326421

RESUMEN

Testosterone acts directly at androgen receptors and also exerts potent actions following 5α-reduction to dihydrotestosterone (DHT). Finasteride (type II 5α-reductase inhibitor) lowers DHT and is used to treat benign prostatic hyperplasia. However, it is unknown whether elevated DHT mediates either beneficial musculoskeletal effects or prostate enlargement resulting from higher-than-replacement doses of testosterone. Our purpose was to determine whether administration of testosterone plus finasteride to older hypogonadal men could produce musculoskeletal benefits without prostate enlargement. Sixty men aged ≥60 yr with a serum testosterone concentration of ≤300 ng/dl or bioavailable testosterone ≤70 ng/dl received 52 wk of treatment with testosterone enanthate (TE; 125 mg/wk) vs. vehicle, paired with finasteride (5 mg/day) vs. placebo using a 2 × 2 factorial design. Over the course of 12 mo, TE increased upper and lower body muscle strength by 8-14% (P = 0.015 to <0.001), fat-free mass 4.04 kg (P = 0.032), lumbar spine bone mineral density (BMD) 4.19% (P < 0.001), and total hip BMD 1.96% (P = 0.024) while reducing total body fat -3.87 kg (P < 0.001) and trunk fat -1.88 kg (P = 0.0051). In the first 3 mo, testosterone increased hematocrit 4.13% (P < 0.001). Coadministration of finasteride did not alter any of these effects. Over 12 mo, testosterone also increased prostate volume 11.4 cm(3) (P = 0.0051), an effect that was completely prevented by finasteride (P = 0.0027). We conclude that a higher-than-replacement TE combined with finasteride significantly increases muscle strength and BMD and reduces body fat without causing prostate enlargement. These results demonstrate that elevated DHT mediates testosterone-induced prostate enlargement but is not required for benefits in musculoskeletal or adipose tissue.


Asunto(s)
Densidad Ósea/efectos de los fármacos , Finasterida/uso terapéutico , Hipogonadismo/tratamiento farmacológico , Músculo Esquelético/efectos de los fármacos , Próstata/efectos de los fármacos , Testosterona/análogos & derivados , Anciano , Composición Corporal/efectos de los fármacos , Quimioterapia Combinada , Finasterida/farmacología , Humanos , Masculino , Persona de Mediana Edad , Fuerza Muscular/efectos de los fármacos , Testosterona/farmacología , Testosterona/uso terapéutico , Resultado del Tratamiento
19.
Steroids ; 78(12-13): 1220-5, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-24012740

RESUMEN

Enzyme immunoassays (EIA) are commonly utilized for the evaluation of androgens in biological fluids; however, careful consideration must be given to cross-reactivity with other endogenous sex-steroid hormones. Our purpose was to determine the validity of a commonly-utilized commercially-available dihydrotestosterone (DHT) EIA. Serum samples obtained from older hypogonadal men who participated in a 12-month randomized controlled trial evaluating the effects of testosterone-enanthate (125 mg/week) or vehicle in combination with finasteride (5mg/day) or placebo were assayed for DHT via EIA and using a validated gold-standard LC-MS/MS approach. Additionally, commercially-available (DHT-free) buffer containing graded testosterone doses was evaluated by DHT immunoassay. DHT concentrations measured via EIA were 79% to >1000% higher than values obtained by LC-MS/MS (p<0.05), with the largest differences (415-1128%) occuring in groups receiving finasteride. Both LC-MS/MS and EIA indicated that testosterone-enanthate increased serum DHT to a similar magnitude. In contrast, finasteride-induced reductions in DHT were detected by LC-MS/MS, but not EIA (p<0.05). No significant associations were present for DHT concentrations between measurement techniques. Cross-reactivity of testosterone with the immunoassay ranged from 18% to 99% and DHT concentrations measured by EIA were highly associated with the spiked testosterone concentrations in DHT-free buffer (r=0.885, p<0.001). In conclusion, we provide evidence invalidating a commonly-utilized commercially-available DHT immunoassay because significant cross-reactivity exists between testosterone and the EIA and because the changes in DHT observed via EIA were not associated with a validated gold-standard measurement technique. The cross-reactivity of testosterone is particularly concerning because testsoterone is present in 100-fold greater concentrations than is DHT within the circulation.


Asunto(s)
Dihidrotestosterona/sangre , Técnicas para Inmunoenzimas/normas , Método Doble Ciego , Reacciones Falso Positivas , Finasterida/administración & dosificación , Humanos , Masculino , Persona de Mediana Edad , Ensayos Clínicos Controlados Aleatorios como Asunto , Estándares de Referencia , Espectrometría de Masas en Tándem , Testosterona/administración & dosificación , Testosterona/sangre
20.
PLoS One ; 7(10): e47315, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23071783

RESUMEN

Several endocrine factors, including sex-steroid hormones are known to influence adiponectin secretion. Our purpose was to evaluate the influence of testosterone and of the synthetic non-aromatizable/non-5α reducible androgen 17ß-hydroxyestra-4,9,11-trien-3-one (trenbolone) on circulating adiponectin and adiponectin protein expression within visceral fat. Young male and female F344 rats underwent sham surgery (SHAM), gonadectomy (GX), or GX plus supraphysiologic testosterone-enanthate (TE) administration. Total circulating adiponectin was 39% higher in intact SHAM females than SHAM males (p<0.05). GX increased total adiponectin by 29-34% in both sexes (p<0.05), while TE reduced adiponectin to concentrations that were 46-53% below respective SHAMs (p≤0.001) and ablated the difference in adiponectin between sexes. No differences in high molecular weight (HMW) adiponectin were observed between sexes or treatments. Adiponectin concentrations were highly and negatively associated with serum testosterone (males: r = -0.746 and females: r = -0.742, p≤0.001); however, no association was present between adiponectin and estradiol. In separate experiments, trenbolone-enanthate (TREN) prevented the GX-induced increase in serum adiponectin (p≤0.001) in young animals, with Low-dose TREN restoring adiponectin to the level of SHAMs and higher doses of TREN reducing adiponectin to below SHAM concentrations (p≤0.001). Similarly, TREN reduced adiponectin protein expression within visceral fat (p<0.05). In adult GX males, Low-dose TREN also reduced total adiponectin and visceral fat mass to a similar magnitude as TE, while increasing serum HMW adiponectin above SHAM and GX animals (p<0.05). Serum adiponectin was positively associated with visceral fat mass in young (r = 0.596, p≤0.001) and adult animals (r = 0.657, p≤0.001). Our results indicate that androgens reduce circulating total adiponectin concentrations in a dose-dependent manner, while maintaining HMW adiponectin. This change is directionally similar to the androgen-induced lipolytic effects on visceral adiposity and equal in magnitude between TE and TREN, suggesting that neither the aromatization nor the 5α reduction of androgens is required for this effect.


Asunto(s)
Adiponectina/sangre , Testosterona/farmacología , Acetato de Trembolona/farmacología , Animales , Femenino , Masculino , Placebos , Ratas , Ratas Endogámicas F344 , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...