Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Biomech (Bristol, Avon) ; 116: 106268, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38795609

RESUMEN

BACKGROUND: Community ambulation involves complex walking adaptability tasks such as stepping over obstacles or taking long steps, which require adequate propulsion generation by the trailing leg. Individuals post-stroke often have an increased reliance on their trailing nonparetic leg and favor leading with their paretic leg, which can limit mobility. Ankle-foot-orthoses are prescribed to address common deficits post-stroke such as foot drop and ankle instability. However, it is not clear if walking with an ankle-foot-orthosis improves inter-limb propulsion symmetry during adaptability tasks. This study sought to examine this hypothesis. METHODS: Individuals post-stroke (n = 9) that were previously prescribed a custom fabricated plantarflexion-stop articulated ankle-foot-orthosis participated. Participants performed steady-state walking and adaptability tasks overground with and without their orthosis. The adaptability tasks included obstacle crossing and long-step tasks, leading with both their paretic and nonparetic leg. Inter-limb propulsion symmetry was calculated using trailing limb ground-reaction-forces. FINDINGS: During the obstacle crossing task, ankle-foot-orthosis use resulted in a significant improvement in inter-limb propulsion symmetry. The orthosis also improved ankle dorsiflexion during stance, reduced knee hyperextension, increased gastrocnemius muscle activity, and increased peak paretic leg ankle plantarflexor moment. In contrast, there were no differences in propulsion symmetry during steady-state walking and taking a long-step when using the orthosis. INTERPRETATION: Plantarflexion-stop articulated ankle-foot-orthoses can improve propulsion symmetry during obstacle crossing tasks in individuals post-stroke, promoting paretic leg use and reduced reliance on the nonparetic leg.


Asunto(s)
Ortesis del Pié , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Caminata , Humanos , Caminata/fisiología , Masculino , Femenino , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/complicaciones , Persona de Mediana Edad , Rehabilitación de Accidente Cerebrovascular/métodos , Anciano , Adaptación Fisiológica , Articulación del Tobillo/fisiopatología , Pie/fisiopatología , Fenómenos Biomecánicos , Tobillo/fisiopatología , Marcha/fisiología , Trastornos Neurológicos de la Marcha/fisiopatología , Trastornos Neurológicos de la Marcha/rehabilitación , Trastornos Neurológicos de la Marcha/etiología , Paresia/fisiopatología , Paresia/rehabilitación , Paresia/etiología
2.
J Biomech ; 155: 111644, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37229888

RESUMEN

Backward walking training has been reported to improve gait speed and balance post-stroke. However, it is not known if gains are achieved through recovery of the paretic limb or compensations from the nonparetic limb. The purpose of this study was to compare the influence of backward locomotor training (BLT) versus forward locomotor training (FLT) on gait speed and dynamic balance control, and to quantify the underlying mechanisms used to achieve any gains. Eighteen participants post chronic stroke were randomly assigned to receive 18 sessions of either FLT (n = 8) or BLT (n = 10). Pre- and post-intervention outcomes included gait speed (10-meter Walk Test) and forward propulsion (time integral of anterior-posterior ground-reaction-forces during late stance for each limb). Dynamic balance control was assessed using clinical (Functional Gait Assessment) and biomechanical (peak-to-peak range of whole-body angular-momentum in the frontal plane) measures. Balance confidence was assessed using the Activities-Specific Balance Confidence scale. While gait speed and balance confidence improved significantly within the BLT group, these improvements were associated with an increased nonparetic limb propulsion generation, suggesting use of compensatory mechanisms. Although there were no improvements in gait speed within the FLT group, paretic limb propulsion generation significantly improved post-FLT, suggesting recovery of the paretic limb. Neither training group improved in dynamic balance control, implying the need of balance specific training along with locomotor training to improve balance control post-stroke. Despite the within-group differences, there were no significant differences between the FLT and BLT groups in the achieved gains in any of the outcomes.


Asunto(s)
Trastornos Neurológicos de la Marcha , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Velocidad al Caminar , Fenómenos Biomecánicos , Paresia , Marcha , Caminata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...