Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Langmuir ; 28(49): 17026-35, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23190196

RESUMEN

Force-separation measurements between Giardia lamblia cysts and an inorganic oxide (silicate glass) have been obtained by using an atomic force microscope (AFM). The cysts are compressible on the scale of the loads applied during force measurement, with the surface compressibility expressed in terms of an interfacial spring constant (K(int)). The force of interaction prior to this Hookean region, on approach, is long-range and repulsive. The long-range force has been compared to models of the electrical double layer as well as an electrosteric layer. The comparison has led to the conclusion that the cyst surface can be described as a polyelectrolyte brush at intermediate separations (5-115 nm from linear compliance) with an electrical double layer often observed at larger separations. The dependence of the interaction force on surface retraction suggests that tethering between the cyst and siliceous surface can occur. The variation of the interaction with pH and upon variation with ionic strength has also been assessed. The information gained from the measurement of the interaction between G. lamblia and this model sandlike surface informs water treatment processes. Similar studies have been performed by us for the Cryptosporidium parvum (C. parvum) oocyst system to which this work is compared.


Asunto(s)
Giardia lamblia/química , Vidrio/química , Oocistos/química , Silicatos/química , Microbiología del Agua , Coloides , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Concentración Osmolar , Electricidad Estática , Propiedades de Superficie , Termodinámica
2.
Langmuir ; 21(14): 6399-405, 2005 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-15982047

RESUMEN

The long-ranged attractions between hydrophobic amorphous fluoropolymer surfaces are measured in water with and without dissolved air. An atomic force microscope is used to obtain more than 500 measured jump-in distances, which yields statistically reliable results. It is found that the range of the attraction and its variability is generally significantly decreased in deaerated water as compared to normal, aerated water. However, the range and strength of the attraction in deaerated water remain significantly greater than the van der Waals attraction for this system. The experimental observations are consistent with (1) nanobubbles being primarily responsible for the long-ranged attraction in normal water, (2) nanobubbles not being present in deaerated water when the surfaces are not in contact, and (3) the attraction in the absence of nanobubbles being most probably due to the approach to the separation-induced spinodal cavitation of the type identified by Bérard et al. [J. Chem. Phys. 1993, 98, 7236]. It is argued that the measurements in deaerated water reveal the bare or pristine hydrophobic attraction unobscured by nanobubbles.


Asunto(s)
Agua/química , Polímeros/química
3.
Water Res ; 36(14): 3421-8, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12230187

RESUMEN

Oocysts of C. parvum have been associated with several waterborne outbreaks of gastro-enteric disease. Currently, one of the main barriers to oocyst contamination of drinking waters is provided by sand-bed filtration. In this study an atomic force microscope (AFM) has been used to measure the force of interaction between oocysts of C. parvum and a model sand surface (silicate glass). The AFM force curves have been compared and contrasted with the corresponding electrical potentials obtained from electrophoretic measurements (zeta). It has been found that the surface of C. parvum oocysts possesses a hairy layer, most likely a result of surface proteins extending into solution. The hairy layer imposes a steric repulsion between the oocyst and sand surface, in addition to any electrostatic repulsion. The hairy layer collapsed to varying extents in the presence of dissolved calcium and dissolved organic carbon, indicating that the oocysts may be more readily adsorbed onto the model sand surface under these conditions. Conversely, as the two surfaces are pulled apart, the occasional attachment of oocyst surface proteins to the model sand surface can result in adhesion. The AFM results offer new insights into the oocyst surface of C. parvum, and the mechanism of interaction with model sand surfaces under conditions relevant to sand-bed filtration.


Asunto(s)
Cryptosporidium parvum , Sedimentos Geológicos/química , Microscopía de Fuerza Atómica , Modelos Teóricos , Animales , Monitoreo del Ambiente , Filtración , Oocistos/aislamiento & purificación , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...