Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Blood ; 141(5): 503-518, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35981563

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive and often incurable disease. To uncover therapeutic vulnerabilities, we first developed T-ALL patient-derived tumor xenografts (PDXs) and exposed PDX cells to a library of 433 clinical-stage compounds in vitro. We identified 39 broadly active drugs with antileukemia activity. Because endothelial cells (ECs) can alter drug responses in T-ALL, we developed an EC/T-ALL coculture system. We found that ECs provide protumorigenic signals and mitigate drug responses in T-ALL PDXs. Whereas ECs broadly rescued several compounds in most models, for some drugs the rescue was restricted to individual PDXs, suggesting unique crosstalk interactions and/or intrinsic tumor features. Mechanistically, cocultured T-ALL cells and ECs underwent bidirectional transcriptomic changes at the single-cell level, highlighting distinct "education signatures." These changes were linked to bidirectional regulation of multiple pathways in T-ALL cells as well as in ECs. Remarkably, in vitro EC-educated T-ALL cells transcriptionally mirrored ex vivo splenic T-ALL at single-cell resolution. Last, 5 effective drugs from the 2 drug screenings were tested in vivo and shown to effectively delay tumor growth and dissemination thus prolonging overall survival. In sum, we developed a T-ALL/EC platform that elucidated leukemia-microenvironment interactions and identified effective compounds and therapeutic vulnerabilities.


Asunto(s)
Células Endoteliales , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Células Endoteliales/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Comunicación Celular , Técnicas de Cocultivo , Microambiente Tumoral
2.
Cancers (Basel) ; 14(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36230838

RESUMEN

The tumor microenvironment acidification confers treatment resistance; therefore, the interference with pH regulating systems is considered a new therapeutic strategy. In this study, two human prostate cancer cell lines, PC3 and LNCaP, have been treated in vitro with proton pump inhibitors (PPIs), namely Lansoprazole, Esomeprazole (V-ATPases-inhibitors), Cariporide, and Amiloride (NHE1-inhibitors). The cell viability and pH were assessed at several drug concentrations either at normoxic or hypoxic conditions. Since Esomeprazole showed the highest toxicity towards the PC3 cancer cells compared to LNCaP ones, athymic nude mice bearing subcutaneous or orthotopic PC3 tumors were treated with Esomeprazole (dose: 2.5 mg/kg body weight) for a period of three weeks-and tumor growth was monitored. MRI-CEST tumor pH imaging with Iopamidol was performed upon treatment at 3 h, 1 week (in combination with FDG-PET), and after 2 weeks for evaluating acute, early, and late responses. Although acute tumor pH changes were observed in vivo, long-term studies on both PC3 prostate cancer models did not provide any significant change in tumor acidosis or tumor growth. In conclusion, this work shows that MRI-CEST tumor pH imaging is a valuable tool for assessing the in vivo treatment response to PPIs.

3.
Adv Sci (Weinh) ; 9(10): e2103745, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35072358

RESUMEN

Cancer nanomedicines rely on the enhanced permeability and retention (EPR) effect for efficient target site accumulation. The EPR effect, however, is highly heterogeneous among different tumor types and cancer patients and its extent is expected to dynamically change during the course of nanochemotherapy. Here the authors set out to longitudinally study the dynamics of the EPR effect upon single- and double-dose nanotherapy with fluorophore-labeled and paclitaxel-loaded polymeric micelles. Using computed tomography-fluorescence molecular tomography imaging, it is shown that the extent of nanomedicine tumor accumulation is predictive for therapy outcome. It is also shown that the interindividual heterogeneity in EPR-based tumor accumulation significantly increases during treatment, especially for more efficient double-dose nanotaxane therapy. Furthermore, for double-dose micelle therapy, tumor accumulation significantly increased over time, from 7% injected dose per gram (ID g-1 ) upon the first administration to 15% ID g-1 upon the fifth administration, contributing to more efficient inhibition of tumor growth. These findings shed light on the dynamics of the EPR effect during nanomedicine treatment and they exemplify the importance of using imaging in nanomedicine treatment prediction and clinical translation.


Asunto(s)
Micelas , Nanopartículas , Humanos , Nanomedicina , Permeabilidad , Nanomedicina Teranóstica/métodos
4.
Metabolites ; 13(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36676972

RESUMEN

Novel anticancer treatments target the pH regulating system that plays a major role in tumor progression by creating an acidic microenvironment, although few studies have addressed their effect on tumor acidosis. In this study, we investigated in vivo several proton pump inhibitors (PPIs) targeting NHE-1 (Amiloride and Cariporide) and V-ATPase (Esomeprazole and Lansoprazole) proton transporters in the DU145 androgen-insensitive human prostate cancer model. In cellulo results showed that DU145 are sensitive, with decreasing efficacy, to Amiloride, Esomeprazole and Lansoprazole, with marked cell toxicity both in normoxia and in hypoxia, with almost any change in pH. In vivo studies were performed upon administration of Esomeprazole to assess both the acute and chronic effects, and Iopamidol-based tumor pH imaging was performed to evaluate tumor acidosis. Although statistically significant tumor pH changes were observed a few hours after Esomeprazole administration in both the acute study and up to one week of treatment in the chronic study, longer treatment resulted in a lack of changes in tumor acidosis, which was associated to similar tumor growth curves between treated and control groups in both the subcutaneous and orthotopic models. Overall, this study highlights MRI-CEST tumor pH imaging as a valid approach to monitoring treatment response to PPIs.

5.
Cancers (Basel) ; 13(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34831016

RESUMEN

Osteosarcoma is the most frequent primary malignant bone tumour with an impressive tendency to metastasise. Highly proliferative tumour cells release a remarkable amount of protons into the extracellular space that activates the NF-kB inflammatory pathway in adjacent stromal cells. In this study, we further validated the correlation between tumour glycolysis/acidosis and its role in metastases. In patients, at diagnosis, we found high circulating levels of inflammatory mediators (IL6, IL8 and miR-136-5p-containing extracellular vesicles). IL6 serum levels significantly correlated with disease-free survival and 18F-FDG PET/CT uptake, an indirect measurement of tumour glycolysis and, hence, of acidosis. In vivo subcutaneous and orthotopic models, co-injected with mesenchymal stromal (MSC) and osteosarcoma cells, formed an acidic tumour microenvironment (mean pH 6.86, as assessed by in vivo MRI-CEST pH imaging). In these xenografts, we enlightened the expression of both IL6 and the NF-kB complex subunit in stromal cells infiltrating the tumour acidic area. The co-injection with MSC also significantly increased lung metastases. Finally, by using 3D microfluidic models, we directly showed the promotion of osteosarcoma invasiveness by acidosis via IL6 and MSC. In conclusion, osteosarcoma-associated MSC react to intratumoural acidosis by triggering an inflammatory response that, in turn, promotes tumour invasiveness at the primary site toward metastasis development.

6.
Adv Drug Deliv Rev ; 175: 113831, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34139255

RESUMEN

Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies.


Asunto(s)
Fibrosis/tratamiento farmacológico , Enfermedades Metabólicas/patología , Neoplasias/patología , Virosis/patología , Animales , Fibrosis/diagnóstico , Humanos , Enfermedades Metabólicas/diagnóstico , Enfermedades Metabólicas/tratamiento farmacológico , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Virosis/diagnóstico , Virosis/tratamiento farmacológico
7.
Biomedicines ; 9(4)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916774

RESUMEN

Labeling of macrophages with perfluorocarbon (PFC)-based compounds allows the visualization of inflammatory processes by 19F-magnetic resonance imaging (19F-MRI), due to the absence of endogenous background. Even if PFC-labeling of monocytes/macrophages has been largely investigated and used, information is lacking about the impact of these agents over the polarization towards one of their cell subsets and on the best way to image them. In the present work, a PFC-based nanoemulsion was developed to monitor the course of inflammation in a model of spinal cord injury (SCI), a pathology in which the understanding of immunological events is of utmost importance to select the optimal therapeutic strategies. The effects of PFC over macrophage polarization were studied in vitro, on cultured macrophages, and in vivo, in a mouse SCI model, by testing and comparing various cell tracking protocols, including single and multiple administrations, the use of MRI or Point Resolved Spectroscopy (PRESS), and application of pre-saturation of Kupffer cells. The blood half-life of nanoemulsion was also investigated by 19F Magnetic Resonance Spectroscopy (MRS). In vitro and in vivo results indicate the occurrence of a switch towards the M2 (anti-inflammatory) phenotype, suggesting a possible theranostic function of these nanoparticles. The comparative work presented here allows the reader to select the most appropriate protocol according to the research objectives (quantitative data acquisition, visual monitoring of macrophage recruitment, theranostic purpose, rapid MRI acquisition, etc.). Finally, the method developed here to determine the blood half-life of the PFC nanoemulsion can be extended to other fluorinated compounds.

8.
Magn Reson Med ; 86(2): 995-1007, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33764575

RESUMEN

PURPOSE: The aim of this study was to investigate two clinically approved plasma volume expanders (dextran 70 and voluven) as macromolecular MRI-chemical exchange saturation transfer (CEST) contrast agents to assess tumor vascular properties. METHODS: CEST contrast efficiency of both molecules (6% w/v) was measured in vitro at various irradiation saturation powers (1-6 µT for 5 s) and pH values (range, 5.5-7.9) and the exchange rate of hydroxyl protons was calculated. In vivo studies in a murine adenocarcinoma model (n = 4 mice for each contrast agent) upon i.v. injection provided CEST-derived perfusion tumor properties that were compared with those obtained with a gadolinium-based blood-pool agent (Gd-AAZTA-Madec). RESULTS: In vitro measurements showed a marked CEST contrast dependency to pH, with higher CEST contrast at lower pH values for both molecules. The measured prototropic exchange rates confirmed a base-catalyzed exchange rate that was faster for dextran 70 in comparison to voluven. Both molecules showed a similar CEST contrast increase (ΔST% > 3%) in the tumor tissue up to 30 min postinjection, with heterogeneous accumulation. In tumors receiving both CEST and T1 -weighted agents, a voxel-by-voxel analysis indicated moderate spatial correlation of perfusion properties between voluven/dextran 70 and Gd-AAZTA-Madec, suggesting different distribution patterns according to their molecular size. CONCLUSIONS: The obtained results showed that both voluven and dextran 70 can be exploited as MRI-CEST contrast agents for evaluating tumor enhancement properties. Their increased accumulation in tumors and prolonged contrast enhancement promote their use as blood-pool MRI-CEST agents to examine tumor vascularization.


Asunto(s)
Medios de Contraste , Neoplasias , Animales , Gadolinio , Imagen por Resonancia Magnética , Ratones , Neoplasias/diagnóstico por imagen , Sustitutos del Plasma
9.
Magn Reson Med ; 85(6): 3479-3496, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33496986

RESUMEN

PURPOSE: Chemical exchange saturation transfer MRI provides new approaches for investigating tumor microenvironment, including tumor acidosis that plays a key role in tumor progression and resistance to therapy. Following iopamidol injection, the detection of the contrast agent inside the tumor tissue allows measurements of tumor extracellular pH. However, accurate tumor pH quantifications are hampered by the low contrast efficiency of the CEST technique and by the low SNR of the acquired CEST images, hence in a reduced detectability of the injected agent. This work aims to investigate a novel denoising method for improving both tumor pH quantification and accuracy of CEST-MRI pH imaging. METHODS: An hybrid denoising approach was investigated for CEST-MRI pH imaging based on the combination of the nonlocal mean filter and the anisotropic diffusion tensor method. The denoising approach was tested in simulated and in vitro data and compared with previously reported methods for CEST imaging and with established denoising approaches. Finally, it was validated with in vivo data to improve the accuracy of tumor pH maps. RESULTS: The proposed method outperforms current denoising methods in CEST contrast quantification and detection of the administered contrast agent at several increasing noise levels with simulated data. In addition, it achieved a better pH quantification in in vitro data and demonstrated a marked improvement in contrast detection and a substantial improvement in tumor pH accuracy in in vivo data. CONCLUSION: The proposed approach effectively reduces the noise in CEST images and increases the sensitivity detection in CEST-MRI pH imaging.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias , Anisotropía , Humanos , Concentración de Iones de Hidrógeno , Yopamidol , Neoplasias/diagnóstico por imagen , Fantasmas de Imagen , Microambiente Tumoral
10.
Methods Mol Biol ; 2216: 241-256, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33476004

RESUMEN

Magnetic Resonance Imaging (MRI) has been actively explored in the last several decades for assessing renal function by providing several physiological information, including glomerular filtration rate, renal plasma flow, tissue oxygenation and water diffusion. Within MRI, the developing field of chemical exchange saturation transfer (CEST) has potential to provide further functional information for diagnosing kidney diseases. Both endogenous produced molecules as well as exogenously administered CEST agents have been exploited for providing functional information related to kidney diseases in preclinical studies. In particular, CEST MRI has been exploited for assessing the acid-base homeostasis in the kidney and for monitoring pH changes in several disease models. This review summarizes several CEST MRI procedures for assessing kidney functionality and pH, for monitoring renal pH changes in different kidney injury models and for evaluating renal allograft rejection.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.


Asunto(s)
Biomarcadores/análisis , Medios de Contraste/química , Procesamiento de Imagen Asistido por Computador/métodos , Riñón/fisiología , Imagen por Resonancia Magnética/métodos , Monitoreo Fisiológico/métodos , Fantasmas de Imagen , Animales , Humanos , Concentración de Iones de Hidrógeno , Programas Informáticos
11.
Methods Mol Biol ; 2216: 429-441, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33476015

RESUMEN

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can provide a noninvasive way for assessing renal functional information following the administration of a small molecular weight gadolinium-based contrast agent. This method may be useful for investigating renal perfusion and glomerular filtration rates of rodents in vivo under various experimental (patho)physiological conditions. Here we describe a step-by-step protocol for DCE-MRI studies in small animals providing practical notes on acquisition parameters, sequences, T1 mapping approaches and procedures.This chapters is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter is complemented by two separate chapters describing the basic concept and data analysis.


Asunto(s)
Medios de Contraste , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Riñón/fisiología , Imagen por Resonancia Magnética/métodos , Monitoreo Fisiológico/métodos , Algoritmos , Animales , Tasa de Filtración Glomerular , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Perfusión , Programas Informáticos
12.
Methods Mol Biol ; 2216: 455-471, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33476017

RESUMEN

Chemical exchange saturation transfer (CEST) is recognized as one of the premier methods for measuring pH with this environmental variable expected to be an excellent biomarker for kidney diseases. Here we describe step-by-step CEST MRI experimental protocols for producing pH and perfusion maps for monitoring kidney pH homeostasis in rodents after administering iopamidol as contrast agent. Several CEST techniques, acquisition protocols and ratiometric approaches are described. The impact of length of acquisition time on the quality of the maps is detailed. These methods may be useful for investigating progression in kidney disease in vivo for rodent models.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol is complemented by two separate chapters describing the basic concepts and data analysis.


Asunto(s)
Medios de Contraste/química , Procesamiento de Imagen Asistido por Computador/métodos , Riñón/fisiología , Imagen por Resonancia Magnética/métodos , Monitoreo Fisiológico/métodos , Fantasmas de Imagen , Animales , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos C57BL , Programas Informáticos
13.
Br J Cancer ; 124(1): 207-216, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33257841

RESUMEN

BACKGROUND: Tumour acidosis is considered to play a central role in promoting cancer invasion and migration, but few studies have investigated in vivo how tumour pH correlates with cancer invasion. This study aims to determine in vivo whether tumour acidity is associated with cancer metastatic potential. METHODS: Breast cancer cell lines with different metastatic potentials have been characterised for several markers of aggressiveness and invasiveness. Murine tumour models have been developed and assessed for lung metastases and tumour acidosis has been assessed in vivo by a magnetic resonance imaging-based chemical exchange saturation transfer (CEST) pH imaging approach. RESULTS: The higher metastatic potential of 4T1 and TS/A primary tumours, in comparison to the less aggressive TUBO and BALB-neuT ones, was confirmed by the highest expression of cancer cell stem markers (CD44+CD24-), highlighting their propensity to migrate and invade, coinciding with the measurement obtained by in vitro assays. MRI-CEST pH imaging successfully discriminated the more aggressive 4T1 and TS/A tumours that displayed a more acidic pH. Moreover, the observed higher tumour acidity was significantly correlated with an increased number of lung metastases. CONCLUSIONS: The findings of this study indicate that the extracellular acidification is associated with the metastatic potential.


Asunto(s)
Neoplasias de la Mama/química , Neoplasias de la Mama/patología , Invasividad Neoplásica/patología , Animales , Línea Celular Tumoral , Femenino , Concentración de Iones de Hidrógeno , Imagen por Resonancia Magnética/métodos , Ratones , Ratones Endogámicos BALB C
14.
Magn Reson Med ; 85(3): 1335-1349, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33031591

RESUMEN

PURPOSE: Chemical exchange saturation transfer MRI can provide accurate pH images, but the slow scan time (due to long saturation periods and multiple offsets sampling) reduce both the volume coverage and spatial resolution capability, hence the possibility to interrogate the heterogeneity in tumors and organs. To overcome these limitations, we propose a fast multislice CEST-MRI sequence with high pH accuracy and spatial resolution. METHODS: The sequence first uses a long saturation pulse to induce the steady-state CEST contrast and a second short saturation pulse repeated after each image acquisition to compensate for signal losses based on an uneven irradiation scheme combined with a single-shot rapid acquisition with refocusing echoes readout. Sequence sensitivity and accuracy in measuring pH was optimized by simulation and assessed by in vitro studies in pH-varying phantoms. In vivo validation was performed in two applications by acquiring multislice pH images covering the whole tumors and kidneys after iopamidol injection. RESULTS: Simulated and in vivo data showed comparable contrast efficiency and pH responsiveness by reducing saturation time. The experimental data from a homogeneous, pH-varying, iopamidol-containing phantom show that the sequence produced a uniform CEST contrast across slices and accurate values across slices in less than 10 minutes. In vivo measurements allowed us to quantify the 3D pH gradients of tumors and kidneys, with pH ranges comparable with the literature. CONCLUSION: The proposed fast multislice CEST-MRI sequence allows volumetric acquisitions with good pH sensitivity, accuracy, and spatial resolution for several in vivo pH imaging applications.


Asunto(s)
Yopamidol , Imagen por Resonancia Magnética , Simulación por Computador , Concentración de Iones de Hidrógeno , Fantasmas de Imagen
15.
Front Oncol ; 10: 161, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32133295

RESUMEN

Altered metabolism is considered a core hallmark of cancer. By monitoring in vivo metabolites changes or characterizing the tumor microenvironment, non-invasive imaging approaches play a fundamental role in elucidating several aspects of tumor biology. Within the magnetic resonance imaging (MRI) modality, the chemical exchange saturation transfer (CEST) approach has emerged as a new technique that provides high spatial resolution and sensitivity for in vivo imaging of tumor metabolism and acidosis. This mini-review describes CEST-based methods to non-invasively investigate tumor metabolism and important metabolites involved, such as glucose and lactate, as well as measurement of tumor acidosis. Approaches that have been exploited to assess response to anticancer therapies will also be reported for each specific technique.

16.
NMR Biomed ; 33(6): e4287, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32153058

RESUMEN

Several factors can lead to acute kidney injury, but damage following ischemia and reperfusion injuries is the main risk factor and usually develops into chronic disease. MRI has often been proposed as a method with which to assess renal function. It does so by measuring the renal perfusion of an injected Gd-based contrast agent. The use of pH-responsive agents as part of the CEST (chemical exchange saturation transfer)-MRI technique has recently shown that pH homeostasis is also an important indicator of kidney functionality. However, there is still a need for methods that can provide more than one type of information following the injection of a single contrast agent for the characterization of renal function. Herein we propose, for the first time, dynamic CEST acquisition following iopamidol injection to quantify renal function by assessing both perfusion and pH homeostasis. The aim of this study is to assess renal functionality in a murine unilateral ischemia-reperfusion injury model at two time points (3 and 7 days) after acute kidney injury. The renal-perfusion estimates measured with iopamidol were compared with those obtained with a gadolinium-based agent, via a dynamic contrast enhanced (DCE)-MRI approach, to validate the proposed method. Compared with the contralateral kidneys, the clamped ones showed a significant decrease in renal perfusion, as measured using the DCE-MRI approach, which is consistent with reduced filtration capability. Dynamic CEST-MRI findings provided similar results, indicating that the clamped kidneys displayed significantly reduced renal filtration that persisted up to 7 days after the damage. In addition, CEST-MRI pH imaging showed that the clamped kidneys displayed significantly increased pH values, reflecting the disturbance to pH homeostasis. Our results demonstrate that a single CEST-MRI contrast agent can provide multiple types of information related to renal function and can discern healthy kidneys from pathological ones by combining perfusion measurements with renal pH mapping.


Asunto(s)
Riñón/diagnóstico por imagen , Riñón/patología , Imagen por Resonancia Magnética , Perfusión , Daño por Reperfusión/diagnóstico por imagen , Enfermedad Aguda , Animales , Medios de Contraste/química , Modelos Animales de Enfermedad , Gadolinio/química , Concentración de Iones de Hidrógeno , Modelos Lineales , Ratones
17.
Cancer Metastasis Rev ; 38(1-2): 25-49, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30762162

RESUMEN

Cancer cells are characterized by a metabolic shift in cellular energy production, orchestrated by the transcription factor HIF-1α, from mitochondrial oxidative phosphorylation to increased glycolysis, regardless of oxygen availability (Warburg effect). The constitutive upregulation of glycolysis leads to an overproduction of acidic metabolic products, resulting in enhanced acidification of the extracellular pH (pHe ~ 6.5), which is a salient feature of the tumor microenvironment. Despite the importance of pH and tumor acidosis, there is currently no established clinical tool available to image the spatial distribution of tumor pHe. The purpose of this review is to describe various imaging modalities for measuring intracellular and extracellular tumor pH. For each technique, we will discuss main advantages and limitations, pH accuracy and sensitivity of the applied pH-responsive probes and potential translatability to the clinic. Particular attention is devoted to methods that can provide pH measurements at high spatial resolution useful to address the task of tumor heterogeneity and to studies that explored tumor pH imaging for assessing treatment response to anticancer therapies.


Asunto(s)
Acidosis/diagnóstico por imagen , Acidosis/metabolismo , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Acidosis/patología , Animales , Humanos , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética/métodos , Neoplasias/patología
18.
J Magn Reson ; 287: 1-9, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29272735

RESUMEN

Several molecules have been exploited for developing MRI pH sensors based on the chemical exchange saturation transfer (CEST) technique. A ratiometric approach, based on the saturation of two exchanging pools at the same saturation power, or by varying the saturation power levels on the same pool, is usually needed to rule out the concentration term from the pH measurement. However, all these methods have been demonstrated by using a continuous wave saturation scheme that limits its translation to clinical scanners. This study shows a new ratiometric CEST-MRI pH-mapping approach based on a pulsed CEST saturation scheme for a radiographic contrast agent (iodixanol) possessing a single chemical exchange site. This approach is based on the ratio of the CEST contrast effects at two different flip angles combinations (180°/360° and 180°/720°), keeping constant the mean irradiation RF power (Bavg power). The proposed ratiometric approach index is concentration independent and it showed good pH sensitivity and accuracy in the physiological range between 6.0 and 7.4.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Algoritmos , Medios de Contraste , Concentración de Iones de Hidrógeno , Interpretación de Imagen Asistida por Computador , Fantasmas de Imagen , Ácidos Triyodobenzoicos
19.
Int J Oncol ; 51(2): 498-506, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28714513

RESUMEN

Dichloroacetate (DCA) can reverse the glycolytic phenotype that is responsible of increased lactate production and extracellular pH acidification in cancer cells. Magnetic resonance imaging-chemical exchange saturation transfer (MRI-CEST) pH mapping is a novel non-invasive imaging approach that can measure in vivo extracellular tumour pH. We examined whether MRI-CEST pH mapping can monitor in vivo changes in tumour acidosis for assessing treatment response to DCA. Cell viability and extracellular pH were assessed in TS/A breast cancer cells treated with 1-10 mM DCA for 24 h in normoxia or hypoxia (1% O2) conditions. Extracellular tumour pH values were measured in vivo by MRI-CEST pH mapping of TS/A tumour-bearing mice before, three days and fifteen days after DCA or saline treatment. Reduced extracellular acidification and vitality were observed in DCA-treated TS/A cells. Tumour-bearing mice showed a marked and significant increase of tumour extracellular pH at 3 days post-DCA treatment, reflecting DCA-induced glycolysis inhibition, as confirmed by reduced lactate production. After 15 days of DCA treatment, the onset of resistance to DCA was observed, with recover of tumour extracellular acidification and lactate levels that returned to baseline values. A significant correlation was observed between tumour extracellular pH values and lactate levels (r= -0.97, P<0.05). These results suggest that MRI-CEST pH imaging is a promising tool to monitor the early response and efficacy of cancer metabolic targeting drugs.


Asunto(s)
Acidosis Láctica/diagnóstico por imagen , Acidosis Láctica/tratamiento farmacológico , Neoplasias de la Mama/complicaciones , Ácido Dicloroacético/administración & dosificación , Animales , Línea Celular Tumoral , Supervivencia Celular , Ácido Dicloroacético/farmacología , Resistencia a Medicamentos , Femenino , Glucólisis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Imagen por Resonancia Magnética , Ratones
20.
Int J Pharm ; 525(1): 275-281, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28433532

RESUMEN

Chemical Exchange Saturation Transfer (CEST) approach is a novel tool within magnetic resonance imaging (MRI) that allows visualization of molecules possessing exchangeable protons with water. Many molecules, employed as excipients for the formulation of finished drug products, are endowed with hydroxyl, amine or amide protons, thus can be exploitable as MRI-CEST contrast agents. Their high safety profiles allow them to be injected at very high doses. Here we investigated the MRI-CEST properties of several excipients (ascorbic acid, sucrose, N-acetyl-d-glucosamine, meglumine and 2-pyrrolidone) and tested them as tumor-detecting agents in two different murine tumor models (breast and melanoma cancers). All the investigated molecules showed remarkable CEST contrast upon i.v. administration in the range 1-3ppm according to the type of mobile proton groups. A marked increase of CEST contrast was observed in tumor regions up to 30min post injection. The combination of marked tumor contrast enhancement and lack of toxicity make these molecules potential candidates for the diagnosis of tumors within the MRI-CEST approach.


Asunto(s)
Medios de Contraste/química , Excipientes/química , Imagen por Resonancia Magnética , Neoplasias/diagnóstico por imagen , Algoritmos , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Protones , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...