RESUMEN
BACKGROUND & AIMS: Intestinal epithelial cell (IEC) damage is a hallmark of celiac disease (CeD); however, its role in gluten-dependent T-cell activation is unknown. We investigated IEC-gluten-T-cell interactions in organoid monolayers expressing human major histocompatibility complex class II (HLA-DQ2.5), which facilitates gluten antigen recognition by CD4+ T cells in CeD. METHODS: Epithelial major histocompatibility complex class II (MHCII) was determined in active and treated CeD, and in nonimmunized and gluten-immunized DR3-DQ2.5 transgenic mice, lacking mouse MHCII molecules. Organoid monolayers from DR3-DQ2.5 mice were treated with or without interferon (IFN)-γ, and MHCII expression was evaluated by flow cytometry. Organoid monolayers and CD4+ T-cell co-cultures were incubated with gluten, predigested, or not by elastase-producing Pseudomonas aeruginosa or its lasB mutant. T-cell function was assessed based on proliferation, expression of activation markers, and cytokine release in the co-culture supernatants. RESULTS: Patients with active CeD and gluten-immunized DR3-DQ2.5 mice demonstrated epithelial MHCII expression. Organoid monolayers derived from gluten-immunized DR3-DQ2.5 mice expressed MHCII, which was upregulated by IFN-γ. In organoid monolayer T-cell co-cultures, gluten increased the proliferation of CD4+ T cells, expression of T-cell activation markers, and the release of interleukin-2, IFN-γ, and interleukin-15 in co-culture supernatants. Gluten metabolized by P aeruginosa, but not the lasB mutant, enhanced CD4+ T-cell proliferation and activation. CONCLUSIONS: Gluten antigens are efficiently presented by MHCII-expressing IECs, resulting in the activation of gluten-specific CD4+ T cells, which is enhanced by gluten predigestion with microbial elastase. Therapeutics directed at IECs may offer a novel approach for modulating both adaptive and innate immunity in patients with CeD.
Asunto(s)
Linfocitos T CD4-Positivos , Enfermedad Celíaca , Glútenes , Antígenos HLA-DQ , Mucosa Intestinal , Activación de Linfocitos , Ratones Transgénicos , Animales , Glútenes/inmunología , Glútenes/metabolismo , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Antígenos HLA-DQ/inmunología , Antígenos HLA-DQ/metabolismo , Antígenos HLA-DQ/genética , Ratones , Técnicas de Cocultivo , Interferón gamma/metabolismo , Organoides/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , FemeninoRESUMEN
Tryptophan is an essential amino acid transformed by host and gut microbial enzymes into metabolites that regulate mucosal homeostasis through aryl hydrocarbon receptor (AhR) activation. Alteration of tryptophan metabolism has been associated with chronic inflammation; however, whether tryptophan supplementation affects the metabolite repertoire and AhR activation under physiological conditions in humans is unknown. We performed a randomized, double blind, placebo-controlled, crossover study in 20 healthy volunteers. Subjects on a low tryptophan background diet were randomly assigned to a 3-wk l-tryptophan supplementation (3 g/day) or placebo, and after a 2-wk washout switched to opposite interventions. We assessed gastrointestinal and psychological symptoms by validated questionnaires, AhR activation by cell reporter assay, tryptophan metabolites by liquid chromatography and high-resolution mass spectrometry, cytokine production in isolated monocytes by ELISA, and microbiota profile by 16S rRNA Illumina technique. Oral tryptophan supplementation was well tolerated, with no changes in gastrointestinal or psychological scores. Compared with placebo, tryptophan increased AhR activation capacity by duodenal contents, but not by feces. This was paralleled by higher urinary and plasma kynurenine metabolites and indoles. Tryptophan had a modest impact on fecal microbiome profiles and no significant effect on cytokine production. At the doses used in this study, oral tryptophan supplementation in humans induces microbial indole and host kynurenine metabolic pathways in the small intestine, known to be immunomodulatory. The results should prompt tryptophan intervention strategies in inflammatory conditions of the small intestine where the AhR pathway is impaired.NEW & NOTEWORTHY We demonstrate that in healthy subjects, orally administered tryptophan activates microbial indole and host kynurenine pathways in the small intestine, the primary metabolic site for dietary components, and the richest source of immune cells along the gut. This study provides novel insights in how to optimally activate immunomodulatory AhR pathways and indole metabolism in the small intestine, serving as basis for future therapeutic trials using l-tryptophan supplementation in chronic inflammatory conditions affecting the small intestine.
Asunto(s)
Estudios Cruzados , Duodeno , Voluntarios Sanos , Receptores de Hidrocarburo de Aril , Triptófano , Humanos , Triptófano/metabolismo , Triptófano/administración & dosificación , Receptores de Hidrocarburo de Aril/metabolismo , Masculino , Adulto , Femenino , Duodeno/metabolismo , Duodeno/efectos de los fármacos , Método Doble Ciego , Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Adulto Joven , Administración Oral , Quinurenina/metabolismo , Citocinas/metabolismo , Heces/microbiología , Heces/química , Indoles/farmacología , Indoles/administración & dosificación , Factores de Transcripción con Motivo Hélice-Asa-Hélice BásicoRESUMEN
Emerging evidence implicates microbial proteolytic activity in ulcerative colitis (UC), but whether it also plays a role in Crohn's disease (CD) remains unclear. We investigated the effects of colonizing adult and neonatal germ-free C57BL/6 mice with CD microbiota, selected based on high (CD-HPA) or low fecal proteolytic activity (CD-LPA), or microbiota from healthy controls with LPA (HC-LPA) or HPA (HC-HPA). We then investigated colitogenic mechanisms in gnotobiotic C57BL/6, and in mice with impaired Nucleotide-binding Oligomerization Domain-2 (NOD2) and Protease-Activated Receptor 2 (PAR2) cleavage resistant mice (Nod2-/-; R38E-PAR2 respectively). At sacrifice, total fecal proteolytic, elastolytic, and mucolytic activity were analyzed. Microbial community and predicted function were assessed by 16S rRNA gene sequencing and PICRUSt2. Immune function and colonic injury were investigated by inflammatory gene expression (NanoString) and histology. Colonization with HC-LPA or CD-LPA lowered baseline fecal proteolytic activity in germ-free mice, which was paralleled by lower acute inflammatory cell infiltrate. CD-HPA further increased proteolytic activity compared with germ-free mice. CD-HPA mice had lower alpha diversity, distinct microbial profiles and higher fecal proteolytic activity compared with CD-LPA. C57BL/6 and Nod2-/- mice, but not R38E-PAR2, colonized with CD-HPA had higher colitis severity than those colonized with CD-LPA. Our results indicate that CD proteolytic microbiota is proinflammatory, increasing colitis severity through a PAR2 pathway.
Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedad de Crohn , Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Ratones Endogámicos C57BL , Receptor PAR-2/genética , ARN Ribosómico 16S/genética , Inflamación , Serina ProteasasRESUMEN
GCN2 (general control nonderepressible 2) is a serine/threonine-protein kinase that controls messenger RNA translation in response to amino acid availability and ribosome stalling. Here, we show that GCN2 controls erythrocyte clearance and iron recycling during stress. Our data highlight the importance of liver macrophages as the primary cell type mediating these effects. During different stress conditions, such as hemolysis, amino acid deficiency or hypoxia, GCN2 knockout (GCN2-/-) mice displayed resistance to anemia compared with wild-type (GCN2+/+) mice. GCN2-/- liver macrophages exhibited defective erythrophagocytosis and lysosome maturation. Molecular analysis of GCN2-/- cells demonstrated that the ATF4-NRF2 pathway is a critical downstream mediator of GCN2 in regulating red blood cell clearance and iron recycling.
Asunto(s)
Aminoácidos , Eritrocitos , Hierro , Hígado , Macrófagos , Proteínas Serina-Treonina Quinasas , Factor de Transcripción Activador 4/metabolismo , Aminoácidos/deficiencia , Aminoácidos/metabolismo , Anemia/metabolismo , Animales , Citofagocitosis , Eritrocitos/metabolismo , Eliminación de Gen , Hemólisis , Hipoxia/metabolismo , Hierro/metabolismo , Hígado/citología , Lisosomas/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés FisiológicoRESUMEN
BACKGROUND & AIMS: Genes and gluten are necessary but insufficient to cause celiac disease (CeD). Altered gut microbiota has been implicated as an additional risk factor. Variability in sampling site may confound interpretation and mechanistic insight, as CeD primarily affects the small intestine. Thus, we characterized CeD microbiota along the duodenum and in feces and verified functional impact in gnotobiotic mice. METHODS: We used 16S rRNA gene sequencing (Illumina) and predicted gene function (PICRUSt2) in duodenal biopsies (D1, D2 and D3), aspirates, and stool from patients with active CeD and controls. CeD alleles were determined in consented participants. A subset of duodenal samples stratified according to similar CeD risk genotypes (controls DQ2-/- or DQ2+/- and CeD DQ2+/-) were used for further analysis and to colonize germ-free mice for gluten metabolism studies. RESULTS: Microbiota composition and predicted function in CeD was largely determined by intestinal location. In the duodenum, but not stool, there was higher abundance of Escherichia coli (D1), Prevotella salivae (D2), and Neisseria (D3) in CeD vs controls. Predicted bacterial protease and peptidase genes were altered in CeD and impaired gluten degradation was detected only in mice colonized with CeD microbiota. CONCLUSIONS: Our results showed luminal and mucosal microbial niches along the gut in CeD. We identified novel microbial proteolytic pathways involved in gluten detoxification that are impaired in CeD but not in controls carrying DQ2, suggesting an association with active duodenal inflammation. Sampling site should be considered a confounding factor in microbiome studies in CeD.
Asunto(s)
Enfermedad Celíaca , Microbioma Gastrointestinal , Ratones , Animales , Enfermedad Celíaca/complicaciones , ARN Ribosómico 16S/genética , Glútenes/metabolismo , Péptido HidrolasasRESUMEN
BACKGROUND: Gnotobiotic mice colonized with microbiota from patients with irritable bowel syndrome (IBS) and comorbid anxiety (IBS+A) display gut dysfunction and anxiety-like behavior compared to mice colonized with microbiota from healthy volunteers. Using this model, we tested the therapeutic potential of the probiotic yeast Saccharomyces boulardii strain CNCM I-745 (S. bou) and investigated underlying mechanisms. METHODS: Germ-free Swiss Webster mice were colonized with fecal microbiota from an IBS+A patient or a healthy control (HC). Three weeks later, mice were gavaged daily with S. boulardii or placebo for two weeks. Anxiety-like behavior (light preference and step-down tests), gastrointestinal transit, and permeability were assessed. After sacrifice, samples were taken for gene expression by NanoString and qRT-PCR, microbiota 16S rRNA profiling, and indole quantification. KEY RESULTS: Mice colonized with IBS+A microbiota developed faster gastrointestinal transit and anxiety-like behavior (longer step-down latency) compared to mice with HC microbiota. S. bou administration normalized gastrointestinal transit and anxiety-like behavior in mice with IBS+A microbiota. Step-down latency correlated with colonic Trpv1 expression and was associated with altered microbiota profile and increased Indole-3-acetic acid (IAA) levels. CONCLUSIONS & INFERENCES: Treatment with S. bou improves gastrointestinal motility and anxiety-like behavior in mice with IBS+A microbiota. Putative mechanisms include effects on pain pathways, direct modulation of the microbiota, and indole production by commensal bacteria.
Asunto(s)
Ansiedad/microbiología , Encéfalo/fisiopatología , Microbioma Gastrointestinal/fisiología , Tránsito Gastrointestinal/fisiología , Mucosa Intestinal/metabolismo , Síndrome del Colon Irritable/microbiología , Saccharomyces boulardii , Animales , Ansiedad/fisiopatología , Encéfalo/metabolismo , Estudios de Casos y Controles , Colon/metabolismo , Trasplante de Microbiota Fecal , Vida Libre de Gérmenes , Humanos , Ácidos Indolacéticos/metabolismo , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/fisiopatología , Masculino , Ratones , Permeabilidad , Canales Catiónicos TRPV/metabolismoRESUMEN
BACKGROUND & AIMS: Altered gut microbiota composition and function have been associated with inflammatory bowel diseases, including ulcerative colitis (UC), but the causality and mechanisms remain unknown. METHODS: We applied 16S ribosomal RNA gene sequencing, shotgun metagenomic sequencing, in vitro functional assays, and gnotobiotic colonizations to define the microbial composition and function in fecal samples obtained from a cohort of healthy individuals at risk for inflammatory bowel diseases (pre-UC) who later developed UC (post-UC) and matched healthy control individuals (HCs). RESULTS: Microbiota composition of post-UC samples was different from HC and pre-UC samples; however, functional analysis showed increased fecal proteolytic and elastase activity before UC onset. Metagenomics identified more than 22,000 gene families that were significantly different between HC, pre-UC, and post-UC samples. Of these, 237 related to proteases and peptidases, suggesting a bacterial component to the pre-UC proteolytic signature. Elastase activity inversely correlated with the relative abundance of Adlercreutzia and other potentially beneficial taxa and directly correlated with known proteolytic taxa, such as Bacteroides vulgatus. High elastase activity was confirmed in Bacteroides isolates from fecal samples. The bacterial contribution and functional significance of the proteolytic signature were investigated in germ-free adult mice and in dams colonized with HC, pre-UC, or post-UC microbiota. Mice colonized with or born from pre-UC-colonized dams developed higher fecal proteolytic activity and an inflammatory immune tone compared with HC-colonized mice. CONCLUSIONS: We have identified increased fecal proteolytic activity that precedes the clinical diagnosis of UC and associates with gut microbiota changes. This proteolytic signature may constitute a noninvasive biomarker of inflammation to monitor at-risk populations that can be targeted therapeutically with antiproteases.
Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Colitis Ulcerosa/microbiología , Heces/microbiología , Microbioma Gastrointestinal , Péptido Hidrolasas/metabolismo , Adolescente , Adulto , Animales , Bacterias/efectos de los fármacos , Bacterias/genética , Proteínas Bacterianas/genética , Biomarcadores/metabolismo , Estudios de Casos y Controles , Niño , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/tratamiento farmacológico , Modelos Animales de Enfermedad , Trasplante de Microbiota Fecal , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Vida Libre de Gérmenes , Humanos , Masculino , Metagenoma , Metagenómica , Ratones Endogámicos C57BL , Péptido Hidrolasas/genética , Valor Predictivo de las Pruebas , Estudios Prospectivos , Inhibidores de Proteasas/uso terapéutico , Proteolisis , Reproducibilidad de los Resultados , Ribotipificación , Adulto JovenRESUMEN
Lycianthes, the third most species-rich genus in the Solanaceae, is distributed in both the New and Old Worlds and is especially diverse in Mexico. Here we provide an identification key, taxonomic descriptions, distribution maps, and illustrations of specimens, trichomes, flowers, and fruits for the 53 known Lycianthes taxa of Mexico and Guatemala. The new combination Lycianthes scandens (Mill.) M.Nee is made and replaces the name Lycianthes lenta (Cav.) Bitter, which is placed in synonymy. Within L. scandens, two varieties are recognized (Lycianthes scandens var. scandens and Lycianthes scandens var. flavicans (Bitter) J.Poore & E.Dean, comb. nov.). In addition, one new species (Lycianthes rafatorresii E.Dean, sp. nov.) is described from eastern Mexico, and 10 names (either recognized taxa or synonyms of recognized taxa) are lectotypified, including the names Solanum heteroclitum Sendtn., S. rantonnetii Carrière, and S. synantherum Sendtn. The species L. multiflora Bitter and L. synanthera (Sendtn.) Bitter are excluded from the treatment, as research indicates that they do not occur in Mexico and Guatemala, however full synonymy for both names is given.
RESUMEN
Metabolism of tryptophan by the gut microbiota into derivatives that activate the aryl hydrocarbon receptor (AhR) contributes to intestinal homeostasis. Many chronic inflammatory conditions, including celiac disease involving a loss of tolerance to dietary gluten, are influenced by cues from the gut microbiota. We investigated whether AhR ligand production by the gut microbiota could influence gluten immunopathology in nonobese diabetic (NOD) mice expressing DQ8, a celiac disease susceptibility gene. NOD/DQ8 mice, exposed or not exposed to gluten, were subjected to three interventions directed at enhancing AhR pathway activation. These included a high-tryptophan diet, gavage with Lactobacillus reuteri that produces AhR ligands or treatment with an AhR agonist. We investigated intestinal permeability, gut microbiota composition determined by 16S rRNA gene sequencing, AhR pathway activation in intestinal contents, and small intestinal pathology and inflammatory markers. In NOD/DQ8 mice, a high-tryptophan diet modulated gut microbiota composition and enhanced AhR ligand production. AhR pathway activation by an enriched tryptophan diet, treatment with the AhR ligand producer L. reuteri, or pharmacological stimulation using 6-formylindolo (3,2-b) carbazole (Ficz) decreased immunopathology in NOD/DQ8 mice exposed to gluten. We then determined AhR ligand production by the fecal microbiota and AhR activation in patients with active celiac disease compared to nonceliac control individuals. Patients with active celiac disease demonstrated reduced AhR ligand production and lower intestinal AhR pathway activation. These results highlight gut microbiota-dependent modulation of the AhR pathway in celiac disease and suggest a new therapeutic strategy for treating this disorder.
Asunto(s)
Enfermedad Celíaca , Microbioma Gastrointestinal , Animales , Humanos , Inflamación , Ligandos , Ratones , ARN Ribosómico 16S , Receptores de Hidrocarburo de Aril/genéticaRESUMEN
BACKGROUND: A low fermentable carbohydrate (FODMAP) diet is used in quiescent inflammatory bowel disease when irritable bowel syndrome-like symptoms occur. There is concern that the diet could exacerbate inflammation by modifying microbiota and short-chain fatty acid (SCFA) production. We examined the effect of altering dietary FODMAP content on inflammation in preclinical inflammatory models. METHODS: C57BL/6 mice were given 3% dextran sodium sulfate (DSS) in drinking water for 5 days and recovered for 3 weeks (postinflammatory, n = 12), or 5 days (positive-control, n = 12). Following recovery, DSS-treated or control mice (negative-control, n = 12) were randomized to 2-week low- (0.51 g/100 g total FODMAP) or high-FODMAP (4.10 g) diets. Diets mimicked human consumption containing fructose, sorbitol, galacto-oligosaccharide, and fructan. Colons were assessed for myeloperoxidase (MPO) activity and histological damage. Supernatants were generated for perforated patch-clamp recordings and cytokine measurement. Cecum contents were analyzed for microbiota, SCFA, and branched-chain fatty acids (BCFA). Data were analyzed by two-way ANOVA with Bonferroni. KEY RESULTS: Inflammatory markers were higher in the positive-control compared with negative-control and postinflammatory groups, but no differences occurred between the two diets within each treatment (MPO P > .99, histological scores P > .99, cytokines P > .05), or the perforated patch-clamp recordings (P > .05). Microbiota clustered mainly based on DSS exposure. No difference in SCFA content occurred. Higher total BCFA occurred with the low-FODMAP diet in positive-control (P < .01) and postinflammatory groups (P < .01). CONCLUSIONS AND INFERENCES: In this preclinical study, reducing dietary FODMAPs did not exacerbate nor mitigate inflammation. Microbiota profile changes were largely driven by inflammation rather than diet. Low FODMAP intake caused a shift toward proteolytic fermentation following inflammation.
Asunto(s)
Carbohidratos de la Dieta , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos/metabolismo , Fermentación , Microbioma Gastrointestinal/genética , Síndrome del Colon Irritable/dietoterapia , Peroxidasa/metabolismo , Animales , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Disacáridos , Modelos Animales de Enfermedad , Hemiterpenos/metabolismo , Inflamación , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/microbiología , Síndrome del Colon Irritable/patología , Isobutiratos/metabolismo , Ratones , Monosacáridos , Nocicepción , Oligosacáridos , Técnicas de Placa-Clamp , Ácidos Pentanoicos/metabolismo , ARN Ribosómico 16SRESUMEN
Anemia is frequently encountered in patients with inflammatory bowel disease (IBD), decreasing the quality of life and significantly worsening the prognosis of the disease. The pathogenesis of anemia in IBD is multifactorial and results mainly from intestinal blood loss in inflamed mucosa and impaired dietary iron absorption. Multiple studies have proposed the use of the polyphenolic compound curcumin to counteract IBD pathogenesis since it has significant preventive and therapeutic properties as an anti-inflammatory agent and very low toxicity, even at high dosages. However, curcumin has been shown to possess properties consistent with those of an iron-chelator, such as the ability to modulate proteins of iron metabolism and decrease spleen and liver iron content. Thus, this property may further contribute to the development and severity of anemia of inflammation and iron deficiency in IBD. Herein, we evaluate the effects of curcumin on systemic iron balance in the dextran sodium sulfate (DSS) model of colitis in C57Bl/6 and BALB/c mouse strains that were fed an iron-sufficient diet. In these conditions, curcumin supplementation caused mild anemia, lowered iron stores, worsened colitis and significantly decreased overall survival, independent of the mouse strain. These findings suggest that curcumin usage as an anti-inflammatory supplement should be accompanied by monitoring of erythroid parameters to avoid exacerbation of iron deficiency anemia in IBD.
Asunto(s)
Anemia Ferropénica/inducido químicamente , Antiinflamatorios no Esteroideos/efectos adversos , Colitis/tratamiento farmacológico , Curcumina/efectos adversos , Anemia Ferropénica/metabolismo , Anemia Ferropénica/patología , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Colitis/inducido químicamente , Colitis/patología , Curcumina/uso terapéutico , Sulfato de Dextran , Femenino , Hierro de la Dieta/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BLRESUMEN
Microbe-host interactions are generally homeostatic, but when dysfunctional, they can incite food sensitivities and chronic diseases. Celiac disease (CeD) is a food sensitivity characterized by a breakdown of oral tolerance to gluten proteins in genetically predisposed individuals, although the underlying mechanisms are incompletely understood. Here we show that duodenal biopsies from patients with active CeD have increased proteolytic activity against gluten substrates that correlates with increased Proteobacteria abundance, including Pseudomonas. Using Pseudomonas aeruginosa producing elastase as a model, we show gluten-independent, PAR-2 mediated upregulation of inflammatory pathways in C57BL/6 mice without villus blunting. In mice expressing CeD risk genes, P. aeruginosa elastase synergizes with gluten to induce more severe inflammation that is associated with moderate villus blunting. These results demonstrate that proteases expressed by opportunistic pathogens impact host immune responses that are relevant to the development of food sensitivities, independently of the trigger antigen.
Asunto(s)
Proteínas Bacterianas/metabolismo , Enfermedad Celíaca/inmunología , Proteínas en la Dieta/inmunología , Interacciones Microbiota-Huesped/inmunología , Metaloendopeptidasas/metabolismo , Receptor PAR-2/inmunología , Adulto , Anciano , Animales , Antígenos/inmunología , Antígenos/metabolismo , Proteínas Bacterianas/genética , Biopsia , Estudios de Casos y Controles , Enfermedad Celíaca/diagnóstico por imagen , Enfermedad Celíaca/microbiología , Enfermedad Celíaca/patología , Estudios de Cohortes , Colonoscopía , Proteínas en la Dieta/metabolismo , Modelos Animales de Enfermedad , Duodeno/inmunología , Duodeno/metabolismo , Duodeno/microbiología , Duodeno/patología , Femenino , Microbioma Gastrointestinal/inmunología , Vida Libre de Gérmenes , Glútenes/inmunología , Glútenes/metabolismo , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/inmunología , Antígenos HLA-DQ/metabolismo , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Masculino , Metaloendopeptidasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Transgénicos , Persona de Mediana Edad , Proteolisis , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/metabolismo , Receptor PAR-2/metabolismo , Regulación hacia Arriba , Adulto JovenRESUMEN
Dietary heme can be used by colonic bacteria equipped with heme-uptake systems as a growth factor and thereby impact on the microbial community structure. The impact of heme on the gut microbiota composition may be particularly pertinent in chronic inflammation such as in inflammatory bowel disease (IBD), where a strong association with gut dysbiosis has been consistently reported. In this study we investigated the influence of dietary heme on the gut microbiota and inferred metagenomic composition, and on chemically induced colitis and colitis-associated adenoma development in mice. Using 16S rRNA gene sequencing, we found that mice fed a diet supplemented with heme significantly altered their microbiota composition, characterized by a decrease in α-diversity, a reduction of Firmicutes and an increase of Proteobacteria, particularly Enterobacteriaceae. These changes were similar to shifts seen in dextran sodium sulfate (DSS)-treated mice to induce colitis. In addition, dietary heme, but not systemically delivered heme, contributed to the exacerbation of DSS-induced colitis and facilitated adenoma formation in the azoxymethane/DSS colorectal cancer (CRC) mouse model. Using inferred metagenomics, we found that the microbiota alterations elicited by dietary heme resulted in non-beneficial functional shifts, which were also characteristic of DSS-induced colitis. Furthermore, a reduction in fecal butyrate levels was found in mice fed the heme supplemented diet compared to mice fed the control diet. Iron metabolism genes known to contribute to heme release from red blood cells, heme uptake, and heme exporter proteins, were significantly enriched, indicating a shift toward favoring the growth of bacteria able to uptake heme and protect against its toxicity. In conclusion, our data suggest that luminal heme, originating from dietary components or gastrointestinal bleeding in IBD and, to lesser extent in CRC, directly contributes to microbiota dysbiosis. Thus, luminal heme levels may further exacerbate colitis through the modulation of the gut microbiota and its metagenomic functional composition. Our data may have implications in the development of novel targets for therapeutic approaches aimed at lowering gastrointestinal heme levels through heme chelation or degradation using probiotics and nutritional interventions.
RESUMEN
Patients with systemic sclerosis (SSc) display altered intestinal microbiota. However, the influence of intestinal dysbiosis on the development of experimental SSc remains unknown. Topoisomerase I peptide-loaded dendritic cell immunization induces SSc-like disease, with progressive skin and lung fibrosis. Breeders were given streptomycin and pups continued to receive antibiotic (ATB) until endpoint (lifelongATB). Alternately, ATB was withdrawn (earlyATB) or initiated (adultATB) during adulthood. Topoisomerase I peptide-loaded dendritic cell (no ATB) immunization induced pronounced skin fibrosis, with increased matrix (Col1a1), profibrotic (Il13, Tweakr), and vascular function (Serpine1) gene expression. Remarkably, earlyATB exposure was sufficient to augment skin Col5a1 and Il13 expression, and inflammatory cell infiltration, which included IL-13+ cells, mononuclear phagocytes, and mast cells. Moreover, skin pathology exacerbation was also observed in lifelongATB and adultATB groups. Oral streptomycin administration induced intestinal dysbiosis, with exposure limited to early life (earlyATB) being sufficient to cause long-term modification of the microbiota and a shift toward increased Bacteroidetes/Firmicutes ratio. Finally, aggravated lung fibrosis and dysregulated pulmonary T-cell responses were observed in earlyATB and lifelongATB but not adultATB-exposed mice. Collectively, intestinal microbiota manipulation with streptomycin exacerbated pathology in two distinct sites, skin and lungs, with early life being a critical window to affect the course of SSc-like disease.
Asunto(s)
Disbiosis/genética , Microbioma Gastrointestinal/efectos de los fármacos , Fibrosis Pulmonar/patología , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/inmunología , Estreptomicina/farmacología , Factores de Edad , Animales , Células Cultivadas , ADN Bacteriano/análisis , Células Dendríticas/efectos de los fármacos , Modelos Animales de Enfermedad , Disbiosis/microbiología , Femenino , Microbioma Gastrointestinal/genética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Fibrosis Pulmonar/genética , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Factores de Riesgo , Esclerodermia Sistémica/patología , Estadísticas no ParamétricasRESUMEN
BACKGROUND: Iron is an important nutrient for both the host and colonizing bacteria. Oral iron supplementation may impact the composition of the microbiota and can be particularly damaging to patients suffering from inflammatory bowel disease (IBD). However, patients with IBD may require iron supplementation to treat their anemia. METHODS: We fed mice with diets supplemented with ferrous sulfate at different doses (5, 50, and 500 mg of iron/kg chow) and with different iron formulations (ferrous sulfate, ferrous bisglycinate and ferric ethylenediaminetetraacetic acid [FEDTA]), and analyzed the effects on the composition of the gut microbiota by 16S ribosomal RNA gene sequencing. Using the dextran sodium sulfate (DSS)-induced colitis mouse model, we investigated the effects of iron supplementation in colitis severity, as well as the use of the probiotic Escherichia coli Nissle 1917 (EcN) in combination with iron supplementation. RESULTS: Iron supplementation at different doses induced shifts in the gut microbial communities and inferred metabolic pathways. However, depending on the iron formulation used in the diets, iron supplementation during dextran sodium sulfate-induced colitis was either beneficial (ferrous bisglycinate) or highly detrimental (FEDTA). Finally, the beneficial effect of the probiotic EcN in the dextran sodium sulfate-induced colitis model was potentiated by oral iron supplementation with ferrous sulfate. CONCLUSIONS: These results show that the iron formulations used to treat iron deficiency influence the gut microbiota and colitis in mice and suggest that distinct iron compounds may be of particular relevance to patients with IBD. In addition, the beneficial action of probiotics in IBD may be enhanced by oral iron supplementation.
Asunto(s)
Colitis/dietoterapia , Sulfato de Dextran/toxicidad , Suplementos Dietéticos , Hierro/farmacología , Microbiota , Probióticos/uso terapéutico , Animales , Colitis/etiología , Modelos Animales de Enfermedad , Femenino , Absorción Intestinal , Ratones , Ratones Endogámicos C57BL , Factores ProtectoresRESUMEN
UNLABELLED: Functional inactivation of HFE or hemojuvelin (HJV) is causatively linked to adult or juvenile hereditary hemochromatosis, respectively. Systemic iron overload results from inadequate expression of hepcidin, the iron regulatory hormone. While HJV regulates hepcidin by amplifying bone morphogenetic protein (BMP) signaling, the role of HFE in the hepcidin pathway remains incompletely understood. We investigated the pathophysiological implications of combined Hfe and Hjv ablation in mice. Isogenic Hfe (-)/(-) and Hjv (-)/(-) mice were crossed to generate double Hfe (-)/(-) Hjv (-)/(-) progeny. Wild-type control and mutant mice of all genotypes were analyzed for serum, hepatic, and splenic iron content, expression of iron metabolism proteins, and expression of hepcidin and Smad signaling in the liver, in response to a standard or an iron-enriched diet. As expected, Hfe (-)/(-) and Hjv (-)/(-) mice developed relatively mild or severe iron overload, respectively, which corresponded to the degree of hepcidin inhibition. The double Hfe (-)/(-) Hjv (-)/(-) mice exhibited an indistinguishable phenotype to single Hjv (-)/(-) counterparts with regard to suppression of hepcidin, serum and hepatic iron overload, splenic iron deficiency, tissue iron metabolism, and Smad signaling, under both dietary regimens. We conclude that the hemochromatotic phenotype caused by disruption of Hjv is not further aggravated by combined Hfe/Hjv deficiency. Our results provide genetic evidence that Hfe and Hjv operate in the same pathway for the regulation of hepcidin expression and iron metabolism. KEY MESSAGES: Combined disruption of Hfe and Hjv phenocopies single Hjv deficiency. Single Hjv(-)/(-) and double Hfe(-)/(-)Hjv(-)/(-) mice exhibit comparable iron overload. Hfe and Hjv regulate hepcidin via the same pathway.
Asunto(s)
Hepcidinas/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Proteínas Ligadas a GPI , Expresión Génica , Hemocromatosis/sangre , Hemocromatosis/complicaciones , Hemocromatosis/genética , Hemocromatosis/metabolismo , Hemocromatosis/patología , Proteína de la Hemocromatosis , Antígenos de Histocompatibilidad Clase I/genética , Hierro/sangre , Sobrecarga de Hierro/etiología , Sobrecarga de Hierro/metabolismo , Hígado/metabolismo , Hígado/patología , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas Smad/genética , Proteínas Smad/metabolismo , Bazo/metabolismo , Bazo/patologíaRESUMEN
Researchers often require customised variations of plasmids that are not commercially available. Here we demonstrate the applicability and versatility of standard synthetic biological parts (biobricks) to build custom plasmids. For this purpose we have built a collection of 52 parts that include multiple cloning sites (MCS) and common protein tags, protein reporters and selection markers, amongst others. Importantly, most of the parts are designed in a format to allow fusions that maintain the reading frame. We illustrate the collection by building several model contructs, including concatemers of protein binding-site motifs, and a variety of plasmids for eukaryotic stable cloning and chromosomal insertion. For example, in 3 biobrick iterations, we make a cerulean-reporter plasmid for cloning fluorescent protein fusions. Furthermore, we use the collection to implement a recombinase-mediated DNA insertion (RMDI), allowing chromosomal site-directed exchange of genes. By making one recipient stable cell line, many standardised cell lines can subsequently be generated, by fluorescent fusion-gene exchange. We propose that this biobrick collection may be distributed peer-to-peer as a stand-alone library, in addition to its distribution through the Registry of Standard Biological Parts (http://partsregistry.org/).
Asunto(s)
Clonación Molecular/métodos , Plásmidos/genética , Línea Celular , Citometría de Flujo , HumanosRESUMEN
BACKGROUND: The ultimate goal of synthetic biology is the conception and construction of genetic circuits that are reliable with respect to their designed function (e.g. oscillators, switches). This task remains still to be attained due to the inherent synergy of the biological building blocks and to an insufficient feedback between experiments and mathematical models. Nevertheless, the progress in these directions has been substantial. RESULTS: It has been emphasized in the literature that the architecture of a genetic oscillator must include positive (activating) and negative (inhibiting) genetic interactions in order to yield robust oscillations. Our results point out that the oscillatory capacity is not only affected by the interaction polarity but by how it is implemented at promoter level. For a chosen oscillator architecture, we show by means of numerical simulations that the existence or lack of competition between activator and inhibitor at promoter level affects the probability of producing oscillations and also leaves characteristic fingerprints on the associated period/amplitude features. CONCLUSIONS: In comparison with non-competitive binding at promoters, competition drastically reduces the region of the parameters space characterized by oscillatory solutions. Moreover, while competition leads to pulse-like oscillations with long-tail distribution in period and amplitude for various parameters or noisy conditions, the non-competitive scenario shows a characteristic frequency and confined amplitude values. Our study also situates the competition mechanism in the context of existing genetic oscillators, with emphasis on the Atkinson oscillator.
Asunto(s)
Algoritmos , Relojes Biológicos/fisiología , Biotecnología/métodos , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Modelos Teóricos , Regiones Promotoras Genéticas/fisiología , Relojes Biológicos/genética , Simulación por Computador , Factores de Transcripción/metabolismoRESUMEN
Here, we propose a framework for the design of synthetic protein networks from modular protein-protein or protein-peptide interactions and provide a starter toolkit of protein building blocks. Our proof of concept experiments outline a general work flow for part-based protein systems engineering. We streamlined the iterative BioBrick cloning protocol and assembled 25 synthetic multidomain proteins each from seven standardized DNA fragments. A systematic screen revealed two main factors controlling protein expression in Escherichia coli: obstruction of translation initiation by mRNA secondary structure or toxicity of individual domains. Eventually, 13 proteins were purified for further characterization. Starting from well-established biotechnological tools, two general-purpose interaction input and two readout devices were built and characterized in vitro. Constitutive interaction input was achieved with a pair of synthetic leucine zippers. The second interaction was drug-controlled utilizing the rapamycin-induced binding of FRB(T2098L) to FKBP12. The interaction kinetics of both devices were analyzed by surface plasmon resonance. Readout was based on Förster resonance energy transfer between fluorescent proteins and was quantified for various combinations of input and output devices. Our results demonstrate the feasibility of parts-based protein synthetic biology. Additionally, we identify future challenges and limitations of modular design along with approaches to address them.
Asunto(s)
Ingeniería de Proteínas/métodos , Mapeo de Interacción de Proteínas , Proteínas Recombinantes de Fusión/genética , Clonación Molecular , ADN/química , Transferencia Resonante de Energía de Fluorescencia , Leucina Zippers , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Resonancia por Plasmón de Superficie , Proteína 1A de Unión a Tacrolimus/metabolismoRESUMEN
Hepcidin, a key regulator of iron metabolism, is a small antimicrobial peptide produced by the liver that regulates intestinal iron absorption and iron recycling by macrophages. Hepcidin is stimulated when iron stores increase and during inflammation and, conversely, is inhibited by hypoxia and augmented erythropoiesis. In many pathologic situations, such as in the anemia of chronic disease (ACD) and iron-loading anemias, several of these factors may be present concomitantly and may generate opposing signaling to regulate hepcidin expression. Here, we address the question of dominance among the regulators of hepcidin expression. We show that erythropoiesis drive, stimulated by erythropoietin but not hypoxia, down-regulates hepcidin in a dose-dependent manner, even in the presence of lipopolysaccharide (LPS) or dietary iron-loading, which may act additively. These effects are mediated through down-regulation of phosphorylation of Stat3 triggered by LPS and of Smad1/5/8 induced by iron. In conclusion, hepcidin expression levels in the presence of opposing signaling are determined by the strength of the individual stimuli rather than by an absolute hierarchy among signaling pathways. Our findings also suggest that erythropoietic drive can inhibit both inflammatory and iron-sensing pathways, at least in part, via the suppression of STAT3 and SMAD4 signaling in vivo.