Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(21): e2400426121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38748579

RESUMEN

Encapsulins are protein nanocompartments that regulate cellular metabolism in several bacteria and archaea. Myxococcus xanthus encapsulins protect the bacterial cells against oxidative stress by sequestering cytosolic iron. These encapsulins are formed by the shell protein EncA and three cargo proteins: EncB, EncC, and EncD. EncB and EncC form rotationally symmetric decamers with ferroxidase centers (FOCs) that oxidize Fe+2 to Fe+3 for iron storage in mineral form. However, the structure and function of the third cargo protein, EncD, have yet to be determined. Here, we report the x-ray crystal structure of EncD in complex with flavin mononucleotide. EncD forms an α-helical hairpin arranged as an antiparallel dimer, but unlike other flavin-binding proteins, it has no ß-sheet, showing that EncD and its homologs represent a unique class of bacterial flavin-binding proteins. The cryo-EM structure of EncA-EncD encapsulins confirms that EncD binds to the interior of the EncA shell via its C-terminal targeting peptide. With only 100 amino acids, the EncD α-helical dimer forms the smallest flavin-binding domain observed to date. Unlike EncB and EncC, EncD lacks a FOC, and our biochemical results show that EncD instead is a NAD(P)H-dependent ferric reductase, indicating that the M. xanthus encapsulins act as an integrated system for iron homeostasis. Overall, this work contributes to our understanding of bacterial metabolism and could lead to the development of technologies for iron biomineralization and the production of iron-containing materials for the treatment of various diseases associated with oxidative stress.


Asunto(s)
Proteínas Bacterianas , FMN Reductasa , Myxococcus xanthus , Myxococcus xanthus/metabolismo , Myxococcus xanthus/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , FMN Reductasa/metabolismo , Cristalografía por Rayos X , Mononucleótido de Flavina/metabolismo , Hierro/metabolismo , Modelos Moleculares , Microscopía por Crioelectrón
2.
Nanoscale Adv ; 6(7): 1853-1873, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38545295

RESUMEN

Lipidoid nanoparticles (LNPs) have transformed the field of drug delivery and are clinically used for the delivery of nucleic acids to liver and muscle targets. Post-intravenous administration, LNPs are naturally directed to the liver due to the adsorption of plasma proteins like apolipoprotein E. In the present work, we have re-engineered LNPs with ionic liquids (ILs) to reduce plasma protein adsorption and potentially increase the accumulation of LNPs in hard-to-deliver central nervous system (CNS) targets such as brain endothelial cells (BECs) and neurons. We have developed two approaches to re-engineer LNPs using a choline trans-2-hexenoate IL: first, we have optimized an IL-coating process using the standard LNP formulation and in the second approach, we have incorporated ILs into the LNPs by replacing the PEG-lipid component in the standard formulation using ILs. IL-coated as well as IL-incorporated LNPs were colloidally stable with morphologies similar to the standard LNPs. IL-coated LNPs showed superior uptake into mouse BECs and neurons and demonstrated reduced mouse plasma protein adsorption compared to the standard LNPs. Overall, our results (1) demonstrate the feasibility of re-engineering the clinically approved LNP platform with highly tunable biomaterials like ILs for the delivery of therapeutics to CNS targets like BECs and neurons and (2) suggest that the surface properties of LNPs play a critical role in altering their affinity to and uptake into hard-to-deliver cell types.

3.
Nat Commun ; 15(1): 255, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177179

RESUMEN

The multifaceted chemo-immune resistance is the principal barrier to achieving cure in cancer patients. Identifying a target that is critically involved in chemo-immune-resistance represents an attractive strategy to improve cancer treatment. iRhom1 plays a role in cancer cell proliferation and its expression is negatively correlated with immune cell infiltration. Here we show that iRhom1 decreases chemotherapy sensitivity by regulating the MAPK14-HSP27 axis. In addition, iRhom1 inhibits the cytotoxic T-cell response by reducing the stability of ERAP1 protein and the ERAP1-mediated antigen processing and presentation. To facilitate the therapeutic translation of these findings, we develop a biodegradable nanocarrier that is effective in codelivery of iRhom pre-siRNA (pre-siiRhom) and chemotherapeutic drugs. This nanocarrier is effective in tumor targeting and penetration through both enhanced permeability and retention effect and CD44-mediated transcytosis in tumor endothelial cells as well as tumor cells. Inhibition of iRhom1 further facilitates tumor targeting and uptake through inhibition of CD44 cleavage. Co-delivery of pre-siiRhom and a chemotherapy agent leads to enhanced antitumor efficacy and activated tumor immune microenvironment in multiple cancer models in female mice. Targeting iRhom1 together with chemotherapy could represent a strategy to overcome chemo-immune resistance in cancer treatment.


Asunto(s)
Células Endoteliales , Neoplasias , Humanos , Femenino , Animales , Ratones , Línea Celular Tumoral , Portadores de Fármacos , Proliferación Celular , Neoplasias/tratamiento farmacológico , Receptores de Hialuranos , Aminopeptidasas , Antígenos de Histocompatibilidad Menor , Proteínas de la Membrana
4.
Sci Adv ; 9(24): eadg8868, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37327331

RESUMEN

Tailed bacteriophages and herpesviruses use a transient scaffold to assemble icosahedral capsids with hexameric capsomers on the faces and pentameric capsomers at all but one vertex where a 12-fold portal is thought to nucleate the assembly. How does the scaffold orchestrate this step? We have determined the portal vertex structure of the bacteriophage HK97 procapsid, where the scaffold is a domain of the major capsid protein. The scaffold forms rigid helix-turn-strand structures on the interior surfaces of all capsomers and is further stabilized around the portal, forming trimeric coiled-coil towers, two per surrounding capsomer. These 10 towers bind identically to 10 of 12 portal subunits, adopting a pseudo-12-fold organization that explains how the symmetry mismatch is managed at this early step.


Asunto(s)
Bacteriófagos , Bacteriófagos/metabolismo , Cápside/química , Proteínas de la Cápside/química , Dominios Proteicos
5.
Nucleic Acids Res ; 51(13): 7025-7035, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37293963

RESUMEN

Double-stranded DNA viruses utilise machinery, made of terminase proteins, to package viral DNA into the capsid. For cos bacteriophage, a defined signal, recognised by small terminase, flanks each genome unit. Here we present the first structural data for a cos virus DNA packaging motor, assembled from the bacteriophage HK97 terminase proteins, procapsids encompassing the portal protein, and DNA containing a cos site. The cryo-EM structure is consistent with the packaging termination state adopted after DNA cleavage, with DNA density within the large terminase assembly ending abruptly at the portal protein entrance. Retention of the large terminase complex after cleavage of the short DNA substrate suggests that motor dissociation from the capsid requires headful pressure, in common with pac viruses. Interestingly, the clip domain of the 12-subunit portal protein does not adhere to C12 symmetry, indicating asymmetry induced by binding of the large terminase/DNA. The motor assembly is also highly asymmetric, showing a ring of 5 large terminase monomers, tilted against the portal. Variable degrees of extension between N- and C-terminal domains of individual subunits suggest a mechanism of DNA translocation driven by inter-domain contraction and relaxation.


Asunto(s)
Bacteriófagos , Ensamble de Virus , Bacteriófagos/genética , Bacteriófagos/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/química , Empaquetamiento del ADN , ADN Viral/genética , Endodesoxirribonucleasas/metabolismo
6.
Structure ; 31(3): 282-294.e5, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36649709

RESUMEN

Many double-stranded DNA viruses, including tailed bacteriophages (phages) and herpesviruses, use the HK97-fold in their major capsid protein to make the capsomers of the icosahedral viral capsid. After the genome packaging at near-crystalline densities, the capsid is subjected to a major expansion and stabilization step that allows it to withstand environmental stresses and internal high pressure. Several different mechanisms for stabilizing the capsid have been structurally characterized, but how these mechanisms have evolved is still not understood. Using cryo-EM structure determination of 10 capsids, structural comparisons, phylogenetic analyses, and Alphafold predictions, we have constructed a detailed structural dendrogram describing the evolution of capsid structural stability within the actinobacteriophages. We show that the actinobacteriophage major capsid proteins can be classified into 15 groups based upon their HK97-fold.


Asunto(s)
Bacteriófagos , Proteínas de la Cápside , Proteínas de la Cápside/química , Cápside/química , Filogenia , Bacteriófagos/metabolismo , Ensamble de Virus , Microscopía por Crioelectrón
7.
Nat Nanotechnol ; 18(2): 193-204, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36424448

RESUMEN

Activation of scramblases is one of the mechanisms that regulates the exposure of phosphatidylserine to the cell surface, a process that plays an important role in tumour immunosuppression. Here we show that chemotherapeutic agents induce overexpression of Xkr8, a scramblase activated during apoptosis, at the transcriptional level in cancer cells, both in vitro and in vivo. Based on this finding, we developed a nanocarrier for co-delivery of Xkr8 short interfering RNA and the FuOXP prodrug to tumours. Intravenous injection of our nanocarrier led to significant inhibition of tumour growth in colon and pancreatic cancer models along with increased antitumour immune response. Targeting Xkr8 in combination with chemotherapy may represent a novel strategy for the treatment of various types of cancers.


Asunto(s)
Nanopartículas , Neoplasias Pancreáticas , Humanos , ARN Interferente Pequeño/uso terapéutico , Apoptosis , Membrana Celular/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Línea Celular Tumoral , Proteínas de la Membrana/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo
8.
bioRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38168155

RESUMEN

Bacterial cells secrete extracellular vesicles (EVs), the function of which is a matter of intense investigation. Here, we show that the EVs secreted by the human pathogen Streptococcus pneumoniae (pneumococcus) are associated with bacterial DNA on their surface and can deliver this DNA to the transformation machinery of competent cells. These findings suggest that EVs contribute to gene transfer in Gram-positive bacteria, and in doing so, may promote the spread of drug resistance genes in the population.

9.
bioRxiv ; 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38187617

RESUMEN

Reverse transcription of the retroviral single-stranded RNA into double-stranded DNA is an integral step during HIV-1 replication, and reverse transcriptase (RT) is a primary target for antiviral therapy. Despite a wealth of structural information on RT, we lack critical insight into the intermediate kinetic states of DNA synthesis. Using catalytically active substrates, and a novel blot/diffusion cryo-electron microscopy approach, we captured 11 structures that define the substrate binding, reactant, transition and product states of dATP addition by RT at 1.9 to 2.4 Å resolution in the active site. Initial dATP binding to RT-template/primer complex involves a single Mg 2+ (site B), and promotes partial closure of the active site pocket by a large conformational change in the ß3-ß4 loop in the Fingers domain, and formation of a negatively charged pocket where a second "drifting" Mg 2+ can bind (site A). During the transition state, the α-phosphate oxygen from a previously unobserved dATP conformer aligns with the site A Mg 2+ and the primer 3'-OH for nucleophilic attack. In the product state, we captured two substrate conformations in the active site: 1) dATP that had yet to be incorporated into the nascent DNA, and 2) an incorporated dAMP with the pyrophosphate leaving group coordinated by metal B and stabilized through H- bonds in the active site of RT. This study provides insights into a fundamental chemical reaction that impacts polymerase fidelity, nucleoside inhibitor drug design, and mechanisms of drug resistance.

10.
Eur J Pharm Biopharm ; 180: 238-250, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36265829

RESUMEN

Lipidoid nanoparticles (LNPs) are clinically successful carriers for nucleic acid delivery to liver and muscle targets. The ability of LNPs to load and deliver small molecule drugs has not been reported yet. We propose that the delivery of adenosine triphosphate (ATP) to brain endothelial cells (BECs) lining the blood-brain barrier may increase cellular energetics of the injured BECs. We formulated and studied the physicochemical characteristics of ATP-loaded LNPs using the C12-200 ionizable cationic lipid and other helper lipids. Polyethylene glycol-dimyristoyl glycerol (PEG-DMG), one of the helper lipids, played a crucial role in maintaining colloidal stability of LNPs over time whereas the inclusion of both ATP and PEG-DMG maintained the colloidal stability of LNPs in the presence of serum proteins. ATP-LNPs formulated with PEG-DMG resulted in a 7.7- and 6.6- fold increased uptake of ATP into normoxic and hypoxic BECs, respectively. Altogether, our results demonstrate the potential of LNPs as a novel carrier for the delivery of small molecular mass actives to BECs-a CNS target.


Asunto(s)
Lípidos , Nanopartículas , Lípidos/química , Células Endoteliales , Adenosina Trifosfato , Nanopartículas/química , Polietilenglicoles/química , Encéfalo , ARN Interferente Pequeño/química
11.
Nucleic Acids Res ; 50(15): 8719-8732, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35947691

RESUMEN

Many essential cellular processes rely on substrate rotation or translocation by a multi-subunit, ring-type NTPase. A large number of double-stranded DNA viruses, including tailed bacteriophages and herpes viruses, use a homomeric ring ATPase to processively translocate viral genomic DNA into procapsids during assembly. Our current understanding of viral DNA packaging comes from three archetypal bacteriophage systems: cos, pac and phi29. Detailed mechanistic understanding exists for pac and phi29, but not for cos. Here, we reconstituted in vitro a cos packaging system based on bacteriophage HK97 and provided a detailed biochemical and structural description. We used a photobleaching-based, single-molecule assay to determine the stoichiometry of the DNA-translocating ATPase large terminase. Crystal structures of the large terminase and DNA-recruiting small terminase, a first for a biochemically defined cos system, reveal mechanistic similarities between cos and pac systems. At the same time, mutational and biochemical analyses indicate a new regulatory mechanism for ATPase multimerization and coordination in the HK97 system. This work therefore establishes a framework for studying the evolutionary relationships between ATP-dependent DNA translocation machineries in double-stranded DNA viruses.


Asunto(s)
Adenosina Trifosfatasas , Ensamble de Virus , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/química , Ensamble de Virus/genética , Proteínas Virales/genética , Proteínas Virales/química , Empaquetamiento del ADN , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/química , ADN Viral/genética , ADN Viral/química
12.
Nat Commun ; 12(1): 4676, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344900

RESUMEN

Interventions against variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Stable and potent nanobodies (Nbs) that target the receptor binding domain (RBD) of SARS-CoV-2 spike are promising therapeutics. However, it is unknown if Nbs broadly neutralize circulating variants. We found that RBD Nbs are highly resistant to variants of concern (VOCs). High-resolution cryoelectron microscopy determination of eight Nb-bound structures reveals multiple potent neutralizing epitopes clustered into three classes: Class I targets ACE2-binding sites and disrupts host receptor binding. Class II binds highly conserved epitopes and retains activity against VOCs and RBDSARS-CoV. Cass III recognizes unique epitopes that are likely inaccessible to antibodies. Systematic comparisons of neutralizing antibodies and Nbs provided insights into how Nbs target the spike to achieve high-affinity and broadly neutralizing activity. Structure-function analysis of Nbs indicates a variety of antiviral mechanisms. Our study may guide the rational design of pan-coronavirus vaccines and therapeutics.


Asunto(s)
Anticuerpos ampliamente neutralizantes/inmunología , Epítopos/inmunología , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Sitios de Unión , Anticuerpos ampliamente neutralizantes/química , Anticuerpos ampliamente neutralizantes/clasificación , Anticuerpos ampliamente neutralizantes/metabolismo , COVID-19/prevención & control , Epítopos/química , Epítopos/metabolismo , Humanos , Modelos Moleculares , Mutación , Unión Proteica , SARS-CoV-2/genética , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/clasificación , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Relación Estructura-Actividad , Tratamiento Farmacológico de COVID-19
13.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074770

RESUMEN

Canine parvovirus is an important pathogen causing severe diseases in dogs, including acute hemorrhagic enteritis, myocarditis, and cerebellar disease. Overlap on the surface of parvovirus capsids between the antigenic epitope and the receptor binding site has contributed to cross-species transmission, giving rise to closely related variants. It has been shown that Mab 14 strongly binds and neutralizes canine but not feline parvovirus, suggesting this antigenic site also controls species-specific receptor binding. To visualize the conformational epitope at high resolution, we solved the cryogenic electron microscopy (cryo-EM) structure of the Fab-virus complex. We also created custom software, Icosahedral Subparticle Extraction and Correlated Classification, to solve a Fab-virus complex with only a few Fab bound per capsid and visualize local structures of the Fab-bound and -unbound antigenic sites extracted from the same complex map. Our results identified the antigenic epitope that had significant overlap with the receptor binding site, and the structures revealed that binding of Fab induced conformational changes to the virus. We were also able to assign the order and position of attached Fabs to allow assessment of complementarity between the Fabs bound to different positions. This approach therefore provides a method for using cryo-EM to investigate complementarity of antibody binding.


Asunto(s)
Anticuerpos Antivirales/química , Sitios de Unión , Cápside/metabolismo , Fragmentos Fab de Inmunoglobulinas/química , Parvovirus Canino/fisiología , Unión Proteica/fisiología , Animales , Anticuerpos Antivirales/inmunología , Antígenos/metabolismo , Microscopía por Crioelectrón , Perros , Epítopos/genética , Epítopos/inmunología , Mutación , Dominios Proteicos
14.
bioRxiv ; 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33758850

RESUMEN

There is an urgent need to develop effective interventions resistant to the evolving variants of SARS-CoV-2. Nanobodies (Nbs) are stable and cost-effective agents that can be delivered by novel aerosolization route to treat SARS-CoV-2 infections efficiently. However, it remains unknown if they possess broadly neutralizing activities against the prevalent circulating strains. We found that potent neutralizing Nbs are highly resistant to the convergent variants of concern that evade a large panel of neutralizing antibodies (Abs) and significantly reduce the activities of convalescent or vaccine-elicited sera. Subsequent determination of 9 high-resolution structures involving 6 potent neutralizing Nbs by cryoelectron microscopy reveals conserved and novel epitopes on virus spike inaccessible to Abs. Systematic structural comparison of neutralizing Abs and Nbs provides critical insights into how Nbs uniquely target the spike to achieve high-affinity and broadly neutralizing activity against the evolving virus. Our study will inform the rational design of novel pan-coronavirus vaccines and therapeutics.

15.
Sci Rep ; 11(1): 1037, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441863

RESUMEN

Mitochondria have a remarkable ability to uptake and store massive amounts of calcium. However, the consequences of massive calcium accumulation remain enigmatic. In the present study, we analyzed a series of time-course experiments to identify the sequence of events that occur in a population of guinea pig cardiac mitochondria exposed to excessive calcium overload that cause mitochondrial permeability transition (MPT). By analyzing coincident structural and functional data, we determined that excessive calcium overload is associated with large calcium phosphate granules and inner membrane fragmentation, which explains the extent of mitochondrial dysfunction. This data also reveals a novel mechanism for cyclosporin A, an inhibitor of MPT, in which it preserves cristae despite the presence of massive calcium phosphate granules in the matrix. Overall, these findings establish a mechanism of calcium-induced mitochondrial dysfunction and the impact of calcium regulation on mitochondrial structure and function.


Asunto(s)
Calcio/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Fosfatos de Calcio/metabolismo , Microscopía por Crioelectrón , Cobayas , Potencial de la Membrana Mitocondrial , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/fisiología , Mitocondrias Cardíacas/ultraestructura , Membranas Mitocondriales/fisiología , Membranas Mitocondriales/ultraestructura
16.
Biophys J ; 119(9): 1781-1790, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33113349

RESUMEN

Although published structural models of viral capsids generally exhibit a high degree of regularity or symmetry, structural defects might be expected because of the fluctuating environment in which capsids assemble and the requirement of some capsids for disassembly before genome delivery. Defective structures are observed in computer simulations, and are evident in single-particle cryoelectron microscopy studies. Here, we quantify the conditions under which defects might be expected, using a statistical mechanics model allowing for ideal, defective, and vacant sites. The model displays a threshold in affinity parameters below which there is an appreciable population of defective capsids. Even when defective sites are not allowed, there is generally some population of vacancies. Analysis of single particles in cryoelectron microscopy micrographs yields a confirmatory ≳15% of defective particles. Our findings suggest structural heterogeneity in virus capsids may be under-appreciated, and also points to a nontraditional strategy for assembly inhibition.


Asunto(s)
Cápside , Virión , Microscopía por Crioelectrón , Ensamble de Virus
17.
J Virol ; 94(24)2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32967953

RESUMEN

The packaging of DNA into preformed capsids is a critical step during herpesvirus infection. For herpes simplex virus, this process requires the products of seven viral genes: the terminase proteins pUL15, pUL28, and pUL33; the capsid vertex-specific component (CVSC) proteins pUL17 and pUL25; and the portal proteins pUL6 and pUL32. The pUL6 portal dodecamer is anchored at one vertex of the capsid by interactions with the adjacent triplexes as well as helical density attributed to the pUL17 and pUL25 subunits of the CVSC. To define the roles and structures of the CVSC proteins in virus assembly and DNA packaging, we isolated a number of recombinant viruses expressing pUL25, pUL17, and pUL36 fused with green or red fluorescent proteins as well as viruses with specific deletions in the CVSC genes. Biochemical and structural studies of these mutants demonstrated that (i) four of the helices in the CVSC helix bundle can be attributed to two copies each of pUL36 and pUL25, (ii) pUL17 and pUL6 are required for capsid binding of the terminase complex in the nucleus, (iii) pUL17 is important for determining the site of the first cleavage reaction generating replicated genomes with termini derived from the long-arm component of the herpes simplex virus 1 (HSV-1) genome, (iv) pUL36 serves no direct role in cleavage/packaging, (v) cleavage and stable packaging of the viral genome involve an ordered interaction of the terminase complex and pUL25 with pUL17 at the portal vertex, and (vi) packaging of the viral genome results in a dramatic displacement of the portal.IMPORTANCE Herpes simplex virus 1 (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. A critical step during productive HSV-1 infection is the cleavage and packaging of replicated, concatemeric viral DNA into preformed capsids. A key knowledge gap is how the capsid engages the replicated viral genome and the subsequent packaging of a unit-length HSV genome. Here, biochemical and structural studies focused on the unique portal vertex of wild-type HSV and packaging mutants provide insights into the mechanism of HSV genome packaging. The significance of our research is in identifying the portal proteins pUL6 and pUL17 as key viral factors for engaging the terminase complex with the capsid and the subsequent cleavage, packaging, and stable incorporation of the viral genome in the HSV-1 capsid.


Asunto(s)
Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Herpesvirus Humano 1/metabolismo , Proteínas Virales/metabolismo , Animales , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Línea Celular , Núcleo Celular/metabolismo , Chlorocebus aethiops , Microscopía por Crioelectrón , Empaquetamiento del ADN , ADN Viral/metabolismo , Endodesoxirribonucleasas , Genes Virales , Genoma Viral , Herpesvirus Humano 1/genética , Células Vero , Proteínas Virales/química , Proteínas Virales/genética , Ensamble de Virus , Replicación Viral
18.
J Mol Biol ; 432(16): 4722-4744, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32598938

RESUMEN

Huntington's disease is a progressive neurodegenerative disease caused by expansion of the polyglutamine domain in the first exon of huntingtin (HttEx1). The extent of expansion correlates with disease progression and formation of amyloid-like protein deposits within the brain. The latter display polymorphism at the microscopic level, both in cerebral tissue and in vitro. Such polymorphism can dramatically influence cytotoxicity, leading to much interest in the conditions and mechanisms that dictate the formation of polymorphs. We examine conditions that govern HttEx1 polymorphism in vitro, including concentration and the role of the non-polyglutamine flanking domains. Using electron microscopy, we observe polymorphs that differ in width and tendency for higher-order bundling. Strikingly, aggregation yields different polymorphs at low and high concentrations. Narrow filaments dominate at low concentrations that may be more relevant in vivo. We dissect the role of N- and C-terminal flanking domains using protein with the former (httNT or N17) largely removed. The truncated protein is generated by trypsin cleavage of soluble HttEx1 fusion protein, which we analyze in some detail. Dye binding and solid-state NMR studies reveal changes in fibril surface characteristics and flanking domain mobility. Higher-order interactions appear facilitated by the C-terminal tail, while the polyglutamine forms an amyloid core resembling those of other polyglutamine deposits. Fibril-surface-mediated branching, previously attributed to secondary nucleation, is reduced in absence of httNT. A new model for the architecture of the HttEx1 filaments is presented and discussed in context of the assembly mechanism and biological activity.


Asunto(s)
Expansión de las Repeticiones de ADN , Proteína Huntingtina/química , Mutación , Exones , Humanos , Proteína Huntingtina/genética , Microscopía Electrónica , Agregado de Proteínas , Dominios Proteicos
19.
J Mol Biol ; 432(2): 384-395, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31711962

RESUMEN

The long flexible tail tube of bacteriophage lambda connects its capsid to the tail tip. On infection, a DNA ejection signal is passed from the tip, along the tube to the capsid that triggers passage of the DNA down the tube and into the host bacterium. The tail tube is built from repeating units of the major tail protein, gpV, which has two distinctive domains. Its N-terminal domain has the same fold as proteins that form the rigid inner tubes of contractile tail phages, such as T4, and its C-terminal domain adopt an Ig-like fold of unknown function. We determined structures of the lambda tail tube in free tails and in virions before and after DNA ejection using cryoelectron microscopy. Modeling of the density maps reveals how electrostatic interactions and a mobile loop participate in assembly and also impart flexibility to the tube while maintaining its integrity. We also demonstrate how a common protein fold produces rigid tubes in some phages but flexible tubes in others.


Asunto(s)
Bacteriófago lambda/ultraestructura , Proteínas de la Cápside/ultraestructura , Siphoviridae/ultraestructura , Proteínas de la Cola de los Virus/ultraestructura , Secuencia de Aminoácidos/genética , Bacteriófago lambda/genética , Cápside/química , Cápside/ultraestructura , Proteínas de la Cápside/genética , Microscopía por Crioelectrón , Modelos Moleculares , Siphoviridae/genética , Electricidad Estática , Proteínas de la Cola de los Virus/genética , Virión/genética , Virión/ultraestructura
20.
Proc Natl Acad Sci U S A ; 116(45): 22591-22597, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31636205

RESUMEN

Studies on viruses infecting archaea living in the most extreme environments continue to show a remarkable diversity of structures, suggesting that the sampling continues to be very sparse. We have used electron cryo-microscopy to study at 3.7-Å resolution the structure of the Sulfolobus polyhedral virus 1 (SPV1), which was originally isolated from a hot, acidic spring in Beppu, Japan. The 2 capsid proteins with variant single jelly-roll folds form pentamers and hexamers which assemble into a T = 43 icosahedral shell. In contrast to tailed icosahedral double-stranded DNA (dsDNA) viruses infecting bacteria and archaea, and herpesviruses infecting animals and humans, where naked DNA is packed under very high pressure due to the repulsion between adjacent layers of DNA, the circular dsDNA in SPV1 is fully covered with a viral protein forming a nucleoprotein filament with attractive interactions between layers. Most strikingly, we have been able to show that the DNA is in an A-form, as it is in the filamentous viruses infecting hyperthermophilic acidophiles. Previous studies have suggested that DNA is in the B-form in bacteriophages, and our study is a direct visualization of the structure of DNA in an icosahedral virus.


Asunto(s)
Virus de Archaea/fisiología , Virus ADN/fisiología , ADN de Forma A/genética , ADN Viral/genética , Ensamble de Virus , Virus de Archaea/genética , Virus de Archaea/ultraestructura , Cápside/metabolismo , Cápside/ultraestructura , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón , Virus ADN/genética , Virus ADN/ultraestructura , ADN de Forma A/metabolismo , ADN Viral/metabolismo , Sulfolobus/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...