Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38498111

RESUMEN

The demands of intensified aquaculture production and escalating disease prevalence underscore the need for efficacious probiotic strategies to enhance fish health. This study focused on isolating and characterising potential probiotics from the gut microbiota of the emerging aquaculture species jade perch (Scortum barcoo). Eighty-seven lactic acid bacteria and 149 other bacteria were isolated from the digestive tract of five adult jade perch. The screening revealed that 24 Enterococcus hirae isolates inhibited the freshwater pathogens Aeromonas sobria and Streptococcus iniae. Co-incubating E. hirae with the host gut suspensions demonstrated a two- to five-fold increase in the size of growth inhibition zones compared to the results when using gut suspensions from tilapia (a non-host), indicating host-specificity. Genome analysis of the lead isolate, E. hirae R44, predicted the presence of antimicrobial compounds like enterolysin A, class II lanthipeptide, and terpenes, which underlay its antibacterial attributes. Isolate R44 exhibited desirable probiotic characteristics, including survival at pH values within the range of 3 to 12, bile tolerance, antioxidant activity, ampicillin sensitivity, and absence of transferable antimicrobial resistance genes and virulence factors commonly associated with hospital Enterococcus strains (IS16, hylEfm, and esp). This study offers a foundation for sourcing host-adapted probiotics from underexplored aquaculture species. Characterisation of novel probiotics like E. hirae R44 can expedite the development of disease mitigation strategies to support aquaculture intensification.

2.
ISME J ; 17(6): 803-812, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36871068

RESUMEN

Extracellular polymeric substances (EPS) are core biofilm components, yet how they mediate interactions within and contribute to the structuring of biofilms is largely unknown, particularly for non-culturable microbial communities that predominate in environmental habitats. To address this knowledge gap, we explored the role of EPS in an anaerobic ammonium oxidation (anammox) biofilm. An extracellular glycoprotein, BROSI_A1236, from an anammox bacterium, formed envelopes around the anammox cells, supporting its identification as a surface (S-) layer protein. However, the S-layer protein also appeared at the edge of the biofilm, in close proximity to the polysaccharide-coated filamentous Chloroflexi bacteria but distal to the anammox bacterial cells. The Chloroflexi bacteria assembled into a cross-linked network at the edge of the granules and surrounding anammox cell clusters, with the S-layer protein occupying the space around the Chloroflexi. The anammox S-layer protein was also abundant at junctions between Chloroflexi cells. Thus, the S-layer protein is likely transported through the matrix as an EPS and also acts as an adhesive to facilitate the assembly of filamentous Chloroflexi into a three-dimensional biofilm lattice. The spatial distribution of the S-layer protein within the mixed species biofilm suggests that it is a "public-good" EPS, which facilitates the assembly of other bacteria into a framework for the benefit of the biofilm community, and enables key syntrophic relationships, including anammox.


Asunto(s)
Compuestos de Amonio , Chloroflexi , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Proteínas de la Membrana , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos , Anaerobiosis , Oxidación-Reducción , Biopelículas , Bacterias/genética , Bacterias/metabolismo , Chloroflexi/metabolismo , Nitrógeno/metabolismo , Aguas del Alcantarillado , Compuestos de Amonio/metabolismo
3.
Pediatr Res ; 93(1): 49-55, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35505080

RESUMEN

Our pilot RCT found that probiotic supplementation with the three-strain bifidobacterial product (B. breve M-16V, B. longum subsp. infantis M-63 and B. longum subsp. longum BB536) attenuates gut dysbiosis, increases stool short-chain fatty acid (SCFA) levels and improves the growth of head circumference in neonates with congenital gastrointestinal surgical conditions (CGISC). In this article, we have provided guidelines for designing future multicentre RCTs based on the experience gained from our pilot RCT. The recommendations include advice about sample size, potential confounders, outcomes of interest, probiotic strain selection, storage, dose, duration and microbial quality assurance, collection of stool samples, storage and analysis and reporting. Following these guidelines will increase the validity of future RCTs in this area and hence confidence in their results. IMPACT: Probiotic supplementation attenuates gut dysbiosis, increases stool short-chain fatty acid (SCFA) levels and improves the growth of head circumference in neonates with congenital gastrointestinal surgical conditions. The current review provides evidence-based guidelines to conduct adequately powered RCTs in this field.


Asunto(s)
Enfermedades Gastrointestinales , Probióticos , Recién Nacido , Humanos , Disbiosis , Probióticos/uso terapéutico , Bifidobacterium , Heces/microbiología
4.
PLoS One ; 17(10): e0276158, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36251714

RESUMEN

Irrational and inappropriate use of antibiotics in commercial chicken production can contribute to the development of antimicrobial resistance. We aimed to assess antibiotic usage in commercial chicken production in Bangladesh, and identify factors associated with this practice. We conducted a large-scale cross-sectional study to collect information on antibiotic usage in commercial chickens from January to May 2021. Structured interviews were conducted with 288 broiler, 288 layer and 192 Sonali (locally-produced cross-bred) farmers in 20 sub-districts across Bangladesh. The frequency of antibiotic usage, the types of antibiotics and purpose of usage were estimated for each production type. Adjusted odds ratios (aOR) were calculated to measure the association between antibiotic usage and factors related to the characteristics of the farms and farmers using multivariable logistic regression models. The proportion of farms, irrespective of their production type, reporting usage of antibiotics in the 24 hours preceding the interview was 41% (n = 314, 95% CI: 37-44%). Forty-five percent (n = 344, 41-48%) reported antibiotic usage in the last 72 hours, 86% (n = 658, 83-88%) in the last 14 days, and almost all farms, 98% (n = 753, 97-99%), had used antibiotics since the start of their production cycle. Use of antibiotics in the 24 hours preceding an interview was more frequently reported in broiler (OR 1.91, 95% CI: 1.36-2.69) and Sonali (OR 1.94, 95% CI: 1.33-2.33) than layer farms. Oxytetracycline (23-31%, depending on production type), doxycycline (18-25%), ciprofloxacin (16-26%) and amoxicillin (16-44%) were the most frequently used antibiotics. Antibiotics were reported to be used for both treatment and prophylactic purposes on most farms (57-67%). Usage of antibiotics in the 24h preceding an interview was significantly associated with the occurrence of any illnesses in chickens (aOR broiler: 41.22 [95% CI:13.63-124.62], layer: aOR 36.45[9.52-139.43], Sonali: aOR 28.47[4.97-162.97]). Antibiotic usage was mainly advised by veterinary practitioners (45-71%, depending on production type), followed by feed dealers (21-40%) and farmers (7-13%). Improvement of chicken health through good farming practices along with changes in key stakeholders (feed dealers and practitioners) attitudes towards antibiotic recommendations to farmers, may help to reduce the levels of antibiotic usage and thus contribute to mitigate antimicrobial resistance.


Asunto(s)
Pollos , Oxitetraciclina , Amoxicilina , Animales , Antibacterianos/uso terapéutico , Bangladesh , Ciprofloxacina , Estudios Transversales , Doxiciclina
5.
Food Chem ; 392: 133229, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-35679723

RESUMEN

The anti-inflammatory effect of different sourced honeys and the impact on elderly gut microbiota were studied in terms of chemical compositions, anti-inflammatory effect and gut microbiota modulating capacities. All four honeys suppressed the production of pro-inflammatory markers NO, IL-1ß and IL-6 induced by lipopolysaccharide and promoted the expression of anti-inflammatory cytokines IL-10 in RAW 264.7 cells. Moreover, in the ex vivo batch gut model using elderly fecal microbiota (referred to as microcosm), it was showed that the addition of honeys increased the abundance of beneficial lactobacilli, decreased the abundance of potentially harmful Gram negative enteric bacteria, and exerted a beneficial effect on the production of short chain fatty acids. The concentration of gallic acid in honeys was positively correlated with the expression level of IL-10 and the abundance of lactobacilli. These findings indicate honeys with anti-inflammatory capacity have great potential for regulating the elderly gut microbiota which would lead to health benefits.


Asunto(s)
Microbioma Gastrointestinal , Miel , Anciano , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Ácidos Grasos Volátiles/metabolismo , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Lactobacillus/metabolismo
6.
Gut Microbes ; 14(1): 2070392, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35549618

RESUMEN

The age-associated alterations in microbiomes vary across populations due to the influence of genetics and lifestyles. To the best of our knowledge, the microbial changes associated with aging have not yet been investigated in Singapore adults. We conducted shotgun metagenomic sequencing of fecal and saliva samples, as well as fecal metabolomics to characterize the gut and oral microbial communities of 62 healthy adult male Singaporeans, including 32 young subjects (age, 23.1 ± 1.4 years) and 30 elderly subjects (age, 69.0 ± 3.5 years). We identified 8 gut and 13 oral species that were differentially abundant in elderly compared to young subjects. By combining the gut and oral microbiomes, 25 age-associated oral-gut species connections were identified. Moreover, oral bacteria Acidaminococcus intestine and Flavonifractor plautii were less prevalent/abundant in elderly gut samples than in young gut samples, whereas Collinsella aerofaciens and Roseburia hominis showed the opposite trends. These results indicate the varied gut-oral communications with aging. Subsequently, we expanded the association studies on microbiome, metabolome and host phenotypic parameters. In particular, Eubacterium eligens increased in elderly compared to young subjects, and was positively correlated with triglycerides, which implies that the potential role of E. eligens in lipid metabolism is altered during the aging process. Our results demonstrated aging-associated changes in the gut and oral microbiomes, as well as the connections between metabolites and host-microbe interactions, thereby deepening the understanding of alterations in the human microbiome during the aging process in a Singapore population.


Asunto(s)
Microbioma Gastrointestinal , Adulto , Anciano , Envejecimiento , Heces/microbiología , Microbioma Gastrointestinal/genética , Humanos , Masculino , Metaboloma , Metagenómica , Singapur , Adulto Joven
7.
Carbohydr Polym ; 290: 119515, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35550745

RESUMEN

Exopolysaccharides from water kefir grains are a potential source of novel, food-safe and functional materials. Herein, prebiotic properties of polysaccharides produced by water kefir-derived Liquorilactobacillus satsumensis bacteria were explored. Strains were cultured in sucrose-supplemented media for exopolysaccharides production, and partial hydrolysis was performed to yield shorter chain polysaccharides. Structural characterization revealed that hydrolyzed polysaccharides were branched glucans comprising α-1,6 bonds and α-1,3/α-1,4 branching, with molecular weight of ~10 kDa. Hydrolyzed polysaccharides demonstrated selective utilization by probiotics, but not by pathogens, and were non-digestible by human digestive enzymes. Particularly, hydrolyzed polysaccharides were fermentable by kefir-derived probiotics, and these were combined in a novel kefir synbiotic formulation. Using large bowel simulated conditions, it was demonstrated that hydrolyzed polysaccharides and kefir synbiotics promoted Bacteroidetes abundance, and increased acetate, propionate, and butyrate concentrations. Overall, hydrolyzed glucans from Liquorilactobacillus satsumensis have prebiotic properties with enhanced benefits in a synbiotic when combined with kefir probiotics.


Asunto(s)
Kéfir , Probióticos , Simbióticos , Glucanos , Humanos , Kéfir/microbiología , Lactobacillus , Polisacáridos , Prebióticos , Probióticos/química , Agua
8.
Front Microbiol ; 13: 857720, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432232

RESUMEN

Kefir grains consist of complex symbiotic mixtures of bacteria and yeasts, and are reported to impart numerous health-boosting properties to milk and water kefir beverages. The objective of this work was to investigate the microbial communities in kefir grains, and explore the possibility of deriving useful probiotic strains from them. A total of 158 microbial strains, representing six fungal and 17 bacterial species, were isolated from milk and water kefir grains collected from a Singapore-based homebrewer. Based on 16S rRNA sequencing, isolated genera included Lactobacillus, Liquorilactobacillus, Lacticaseibacillus, Lentilactobacillus, Leuconostoc, Lactococcus, Acetobacter, Gluconobacter, Oenococcus, Clostridium, Zymomonas, Saccharomyces, Kluyveromyces, Pichia, Lachancea, Candida, and Brettanomyces. To characterize these isolates, a funnel approach, involving numerous phenotypic and genomic screening assays, was applied to identify kefir-derived microbial strains with the highest probiotic potential. Particular focus was placed on examining the pathogen inhibitory properties of kefir isolates toward enteric pathogens which pose a considerable global health burden. Enteric pathogens tested include species of Bacillus, Salmonella, Vibrio, Clostridium, Klebsiella, Escherichia, and Staphylococcus. Well diffusion assays were conducted to determine the propensity of kefir isolates to inhibit growth of enteric pathogens, and a competitive adhesion/exclusion assay was used to determine the ability of kefir isolates to out-compete or exclude attachment of enteric pathogens to Caco-2 cells. Seven bacterial strains of Lentilactobacillus hilgardii, Lacticaseibacillus paracasei, Liquorilactobacillus satsumensis, Lactobacillus helveticus, and Lentilactobacillus kefiri, were ultimately identified as potential probiotics, and combined to form a "kefir probiotics blend." Desirable probiotic characteristics, including good survival in acid and bile environments, bile salt hydrolase activity, antioxidant activity, non-cytotoxicity and high adhesion to Caco-2 cells, and a lack of virulence or antimicrobial resistance genes. In addition, vitamin and γ-aminobutyric acid (GABA) synthesis genes, were identified in these kefir isolates. Overall, probiotic candidates derived in this study are well-characterized strains with a good safety profile which can serve as novel agents to combat enteric diseases. These kefir-derived probiotics also add diversity to the existing repertoire of probiotic strains, and may provide consumers with alternative product formats to attain the health benefits of kefir.

9.
Artículo en Inglés | MEDLINE | ID: mdl-35185013

RESUMEN

OBJECTIVE: Evidence indicates that multistrain probiotics benefit preterm infants more than single-strain (SS) probiotics. We assessed the effects of SS versus triple-strain (TS) probiotic supplementation (PS) in extremely preterm (EP) infants. DESIGN: EP infants (gestational age (GA) <28 weeks) were randomly allocated to TS or SS probiotic, assuring blinding. Reference (REF) group was EP infants in the placebo arm of our previous probiotic trial. PS was commenced with feeds and continued until 37 weeks' corrected GA. Primary outcome was time to full feed (TFF: 150 mL/kg/day). Secondary outcomes included short-chain fatty acids and faecal microbiota collected at T1 (first week) and T2 (after 3 weeks of PS) using 16S ribosomal RNA gene sequencing. RESULTS: 173 EP (SS: 86, TS: 87) neonates with similar GA and birth weight (BW) were randomised. Median TFF was comparable (11 (IQR 8-16) vs 10 (IQR 8-16) days, p=0.92). Faecal propionate (SS, p<0.001, and TS, p=0.0009) and butyrate levels (TS, p=0.029) were significantly raised in T2 versus T1 samples. Secondary clinical outcomes were comparable. At T2, alpha diversity was comparable (p>0.05) between groups, whereas beta-diversity analysis revealed significant differences between PS and REF groups (both p=0.001). Actinobacteria were higher (both p<0.01), and Proteobacteria, Firmicutes and Bacteroidetes were lower in PS versus REF. Gammaproteobacteria, Clostridia and Negativicutes were lower in both PS versus REF. CONCLUSION: TFF in EP infants was similar between SS and TS probiotics. Both probiotics were effective in reducing dysbiosis (higher bifidobacteria and lower Gammaproteobacteria). Long-term significance of increased propionate and butyrate needs further studies. TRIAL REGISTRATION NUMBER: ACTRN 12615000940572.


Asunto(s)
Recien Nacido Extremadamente Prematuro , Probióticos , Bifidobacterium , Butiratos , Firmicutes , Humanos , Lactante , Recién Nacido , Probióticos/uso terapéutico , Propionatos
10.
Pediatr Res ; 92(4): 1122-1131, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34980887

RESUMEN

OBJECTIVE: To evaluate whether probiotic supplementation attenuates gut-dysbiosis in neonates with congenital gastrointestinal surgical conditions (CGISC). METHODS: Sixty-one neonates (≥35 weeks gestation) with CGISC were randomised to receive daily supplementation with a triple-strain bifidobacterial probiotic (n = 30) or placebo (n = 31) until discharge. Stool microbiota was analysed using 16S ribosomal RNA gene sequencing on samples collected before (T1), 1 week (T2), and 2 weeks (T3) after supplementation and before discharge (T4). The primary outcome was the sum of the relative abundance of potentially pathogenic families of Clostridiaceae, Enterobacteriaceae, Enterococcaceae, Pseudomonaceae, Staphylococcaeae, Streptococcaceae, and Yersiniaceae at T3. RESULTS: The median gestational age [38 weeks (IQR: 37.1-38.9)] was similar in both groups. The probiotic group had lower rates of caesarean deliveries (40% versus 70%, p = 0.02). The relative abundance of potentially pathogenic families was lower in the probiotic group compared to placebo at T3 [(median: 50.4 (IQR: 26.6-67.6) versus 67.1 (IQR: 50.9-96.2); p = 0.04). Relative abundance of Bifidobacteriaceae was higher in the probiotic group at T3 [(median: 39.8 (IQR: 24.9-52.1) versus 0.03 (IQR 0.02-2.1); p < 0.001). Stratified analysis continued to show a higher abundance of Bifidobacteriaceae in the probiotic group, irrespective of the mode of delivery. CONCLUSIONS: Probiotic supplementation attenuated gut dysbiosis in neonates with CGISC. TRIAL REGISTRATION: http://www.anzctr.org.au (ACTRN12617001401347). IMPACT: Probiotic supplementation attenuates gut dysbiosis and improves stool short-chain fatty acid levels in neonates with congenital gastrointestinal surgical conditions. This is the second pilot RCT of probiotic supplementation in neonates with congenital gastrointestinal conditions. These findings will pave the way for conducting multicentre RCTs in this area.


Asunto(s)
Enfermedades Gastrointestinales , Probióticos , Recién Nacido , Embarazo , Femenino , Humanos , Lactante , Disbiosis , Proyectos Piloto , Probióticos/uso terapéutico , Bifidobacterium , Ácidos Grasos Volátiles
11.
Front Microbiol ; 11: 609734, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343554

RESUMEN

Lactobacillus fermentum PC1 with proven probiotic properties was used to ferment oats with added honey to develop a probiotic beverage with enhanced bioactive ingredients. The viable Lactobacilli were enumerated during the fermentation and storage at 4°C, as well as after exposure to simulated gastrointestinal tract conditions. Good survival was noted both during storage as well as when exposed to the in vitro digestive tract conditions. Comparative analysis of the antioxidant activity, total phenolic content, and phenolic composition indicated fermentation improved the total antioxidant capacity and phenolic acid concentration. An increase of more than 50% of gallic acid, catechin, vanillic acid, caffeic acid, p-coumaric acid, and ferulic acid was observed in the methanol extracts. Moreover, no significant decrease in the ß-glucan content was noted during fermentation and storage. In conclusion, this fermented product has a great potential as a functional food with enhanced probiotic survival and increased bioactive ingredients.

12.
J Proteome Res ; 19(8): 3264-3275, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32434331

RESUMEN

Comparative metabolomics analysis of biofluids could provide information about the metabolic alterations in aging. To investigate the signature of multiple metabolic profiles associated with aging in an Asian population, we performed a pilot study in healthy Singaporeans, including 33 elderly and 33 young males. Fasting whole bloods were analyzed by routine hematology; the serum and urine metabolome profiles were obtained using NMR-based nontargeted metabolomics analysis and targeted lipoprotein analysis. Among the 90 identified compounds in serum and urine samples, 32 were significantly different between the two groups. The most obvious age-related metabolic signatures include decreased serum levels of albumin lysyl and essential amino acids and derivatives but increased levels of N-acetyl glycoproteins and several lipids and elevated urine levels of trimethylamine N-oxide, scyllo-inositol, citrate, and ascorbic acid but decreased levels of several amino acids, acetate, etc. Among 112 lipoprotein subfractions, 65 were elevated, and 2 were lower in the elderly group. These significantly age-varying metabolites, especially in the amino acid and fatty acid metabolism pathways, suggest that the regulation of these pathways contributes to the aging process in Chinese Singaporeans. Further multiomics studies including the gut microbiome and intervention studies in a larger cohort are needed to elucidate the possible mechanisms in the aging process.


Asunto(s)
Microbioma Gastrointestinal , Metabolómica , Anciano , Humanos , Masculino , Metaboloma , Proyectos Piloto , Urinálisis
13.
Pediatr Res ; 88(6): 878-886, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32179871

RESUMEN

BACKGROUND: There is limited information on gut microbiota of neonates with congenital gastrointestinal surgical conditions (CGISCs) available. METHODS: This study compared stool microbiota and short-chain fatty acids (SCFAs) of 37 term infants with CGISCs with 36 term healthy infants (HIs). Two stool samples were collected from each infant: as soon as possible after birth (week 1) and 10-14 days of life (week 2). RESULTS: Bacterial richness and alpha diversity were comparable between CGISCs and HIs at week 1 and week 2 (all p > 0.05). Beta diversity analysis revealed that at week 1, CGISCs had similar community structures to HIs (p = 0.415). However, by week 2, community structures of CGISCs were significantly different from HIs (p = 0.003). At week 1, there were no significant differences in the relative abundances of genera Bifidobacterium and Bacteroides between CGISCs and HIs. At week 2, the relative abundance of Bifidobacterium was significantly lower in CGISCs (mean percentage 7.21 ± 13.49 vs. 28.96 ± 19.6; p = 0.002). Bacteroides were also less abundant in the CGISC group (mean percentage 0.12 ± 0.49 vs. 6.59 ± 8.62; p = 0.039). Relative abundance of genera Pseudomonas and Escherichia-Shigella were higher in CGISCs. At week 2, stool concentrations of all SCFAs were lower in CGISCs (all p < 0.001). CONCLUSIONS: During hospitalization, neonates with CGISCs develop gut dysbiosis and deficiency of SCFAs. IMPACT: During hospitalisation, neonates with congenital gastrointestinal surgical conditions develop gut dysbiosis with deficiency of Bifidobacteria and Bacteroides and increased abundance of Escherichia-Shigella and Pseudomonas. They also have low levels of short chain fatty acids in their stools compared to healthy infants. This is the first study evaluating the gut microbiota using 16S ribosomal RNA sequencing methods and stool short chain fatty acids in neonates with congenital gastrointestinal surgical conditions and comparing them to healthy infants. The findings of this study will pave the way for randomised trials of bifidobacterial supplementation in neonates with congenital gastrointestinal surgical conditions.


Asunto(s)
Enfermedades Gastrointestinales/complicaciones , Microbioma Gastrointestinal , Bacteroides , Bifidobacterium , Calibración , Escherichia coli , Ácidos Grasos Volátiles/metabolismo , Heces/microbiología , Femenino , Cromatografía de Gases y Espectrometría de Masas , Enfermedades Gastrointestinales/congénito , Hospitalización , Humanos , Recien Nacido Extremadamente Prematuro , Recién Nacido , Recien Nacido Prematuro , Modelos Lineales , Masculino , Reacción en Cadena de la Polimerasa , Estudios Prospectivos , Pseudomonas , ARN Ribosómico 16S , Factores de Riesgo , Shigella , Resultado del Tratamiento
14.
Nutrients ; 11(4)2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30959746

RESUMEN

Lactobacillus strains have shown efficacy in attenuating inflammation. This study evaluated the potential of Lactobacillus fermentum PC1 for the treatment of rheumatoid arthritis (RA) using a murine model of collagen-induced arthritis. On Day 1, healthy DBA/1 mice (six to eight weeks of age) were immunized, with 100 µg of Chicken Type 11 collagen emulsified in complete Freund's adjuvant (CFA) by intradermal injection, at the base of the tail. On Day 21, the mice were immunized intraperitoneally with 100 µg of Bovine Type11 collagen in phosphate buffered saline (PBS). On Day 28, the mice were immunized intraperitoneally with 50 µg of lipopolysaccharide (LPS). Viable L. fermentum PC1 (1 × 108 colony forming units) was given daily from Day two until the end of the experiment. From Day 21 onwards, the mice were monitored daily for clinical signs of arthritis. On Day 44, the experiment was terminated. Paws were obtained for histology and serum for cytokine assays. L. fermentum PC1-fed mice had significantly reduced paw inflammation as well as decreased synovial infiltration and less cartilage damage. Circulating serum cytokine profiles revealed decreased IL-12 and increased anti-inflammatory cytokines, namely IL-4 and IL-10. Thus, early administration of L. fermentum PC1 could prove to be a valuable therapeutic agent in the management of RA.


Asunto(s)
Artritis Experimental/inducido químicamente , Colágeno Tipo II/toxicidad , Inflamación/tratamiento farmacológico , Limosilactobacillus fermentum/fisiología , Probióticos/farmacología , Animales , Artritis Experimental/terapia , Articulaciones/efectos de los fármacos , Articulaciones/patología , Masculino , Ratones , Ratones Endogámicos DBA
15.
Int J Mol Sci ; 19(11)2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30463246

RESUMEN

Amphibian skin secretions are enriched with complex cocktails of bioactive molecules such as proteins, peptides, biogenic amines, alkaloids guanidine derivatives, steroids and other minor components spanning a wide spectrum of pharmacological actions exploited for centuries in folk medicine. This study presents evidence on the protein profile of the skin secretions of the canyon tree frog, Dryophytes arenicolor. At the same time, it presents the reverse-phase liquid chromatography isolation, mass spectrometry characterization and identification at mRNA level of a novel 58 amino acids Kunitz-like polypeptide from the skin secretions of Dryophytes arenicolor, arenin. Cell viability assays performed on HDFa, CaCo2 and MCF7 cells cultured with different concentrations of arenin showed a discrete effect at low concentrations (2, 4, 8 and 16 µg/mL) suggesting a multi-target interaction in a hormetic-like dose-response. Further work is required to investigate the mechanisms underlying the variable effect on cell viability produced by different concentrations of arenin.


Asunto(s)
Anuros/metabolismo , Péptidos/farmacología , Piel/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Proliferación Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , ADN Complementario/genética , Humanos , Modelos Moleculares , Péptidos/química
16.
BMC Res Notes ; 11(1): 567, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089517

RESUMEN

OBJECTIVE: It is well established that polyethylene (PE) wear particles induce macrophage production of cytokines and mediators associated with the pathogenesis of inflammatory osteolysis. The objective of this study was to examine the potential of three Lactobacillus strains to attenuate the TNF-α cytokine response of macrophages exposed to Ceridust 3615 PE particles. An in vitro experimental model using the RAW 246.7 macrophage cell line and PE particles was utilized. RESULTS: Lactobacillus strains were found to modulate the cytokines in a strain and dose specific manner. Only the Lactobacillus acidophilus strain that was tested was able to attenuate PE particle-induced TNF-α production by RAW 246.7 macrophages. This effect was independent of IL-10 cytokine levels since all three strains of lactobacilli yielded comparable levels of IL-10. It was concluded that some, but not all, Lactobacillus strains may be useful in reducing the risk of inflammatory osteolysis and that further studies in appropriate in vivo models are warranted. Furthermore, this in vitro model can be used to evaluate the inflammatory potential of new materials being tested for use as joint implants.


Asunto(s)
Inflamación , Lactobacillus , Macrófagos/efectos de los fármacos , Animales , Citocinas , Ratones , Osteólisis , Polietileno/toxicidad , Factor de Necrosis Tumoral alfa
17.
Appl Microbiol Biotechnol ; 102(7): 3095-3104, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29497795

RESUMEN

Methanogens are anaerobic prokaryotes from the domain archaea that utilize hydrogen to reduce carbon dioxide, acetate, and a variety of methyl compounds into methane. Earlier believed to inhabit only the extreme environments, these organisms are now reported to be found in various environments including mesophilic habitats and the human body. The biological significance of methanogens for humans has been re-evaluated in the last few decades. Their contribution towards pathogenicity has received much less attention than their bacterial counterparts. In humans, methanogens have been studied in the gastrointestinal tract, mouth, and vagina, and considerable focus has shifted towards elucidating their possible role in the progression of disease conditions in humans. Methanoarchaea are also part of the human skin microbiome and proposed to play a role in ammonia turnover. Compared to hundreds of different bacterial species, the human body harbors only a handful of methanogen species represented by Methanobrevibacter smithii, Methanobrevibacter oralis, Methanosphaera stadtmanae, Methanomassiliicoccus luminyensis, Candidatus Methanomassiliicoccus intestinalis, and Candidatus Methanomethylophilus alvus. Their presence in the human gut suggests an indirect correlation with severe diseases of the colon. In this review, we examine the current knowledge about the methanoarchaea in the human body and possible beneficial or less favorable interactions.


Asunto(s)
Euryarchaeota/fisiología , Enfermedades Intestinales/microbiología , Microbiota , Humanos , Metano/metabolismo , Methanobacteriaceae/fisiología , Methanobrevibacter/fisiología , Enfermedades de la Piel/microbiología
18.
Asia Pac J Clin Nutr ; 26(5): 957-971, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28802306

RESUMEN

BACKGROUND AND OBJECTIVES: The human being is a complex entity, involving interaction between microbes and the human host. Evidence shows that the nutritional value of food is influenced in part by the structure and operations of an individual's gut microbial community, and food in turn shapes the individual's microbiome. A conference was held to promote understanding of the intestinal microbiome and its implications for health and disease, particularly among Asian populations. METHODS AND STUDY DESIGN: Papers describing 1) the intestinal ecosystem in Asian populations, 2) changes in intestinal microbiota through life and its effects, 3) the Asian gut microbiota in disease conditions, 4) indigenous probiotics to maintain a healthy gut microbiota, 5) probiotic regulation in an Asian country, and 6) the results of a panel discussion are included in this report. CONCLUSIONS: The gut microbial inhabitants of Asian people differ from those of Europe and North America. Geographic location, diet, and ethnic background influence intestinal microbial composition. Urbanization and economic development have brought changes in traditional Asian diets, which in turn affected the gut microbiome, contributing to a shift in the region's health burden from infectious diseases to non-communicable chronic diseases. Novel probiotic strains of Indonesian origin demonstrated significant enhancement of humoral immune response in human studies. Knowledge gaps and implications for research to further understand the Asian gut microbiome were discussed.


Asunto(s)
Dieta , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Probióticos , Antibacterianos , Asia Sudoriental , Investigación Biomédica , Microbioma Gastrointestinal/efectos de los fármacos , Salud Global , Humanos
20.
Vaccines (Basel) ; 4(3)2016 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-27447674

RESUMEN

This study examined the influences of the dosage of the adjuvant, the nature of the antigen and the host genetics on the capacity of L. fermentum PC1 (PC1) to function as an oral adjuvant. BALB/c and DBA/1 mice were vaccinated with either ovalbumin (OVA) or Salmonella Typhimurium on days 0 and 14, Mice were also dosed with the PC1 (108 CFU or 10(11) CFU per dose per mouse) with the antigens (days 0 and 14) and alone (days -1 and 13). The higher PC1 dose elicited a greater specific serum IgG2a response than IgG1 for both antigens and mice strains, indicating a Th1-biased humoral immune response. The Th1 bias was also observed at the cellular level with greater specific IFN-γ levels than IL-4 and IL-10 with both antigen types and mouse strains. With the particulate antigen, the lower dose of PC1 elicited a Th1 bias at the cellular level, but a balanced Th1/Th2 response at the systemic humoral level. With the soluble antigen, a strong Th1-biased response occurred at the cellular level while the systemic humoral response was Th2-biased. In conclusion, PC1 at the higher dose was an excellent Th1 adjuvant, which was unaffected by the nature of the antigen or the host's genetic background.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA