RESUMEN
Many strategies for regenerating the damaged tissues or degenerating cells are employed in regenerative medicine. Stem cell technology is a modern strategy of the recent approaches, particularly the use of mesenchymal stem cells (MCSs). The ability of MSCs to differentiate as well as their characteristic behaviour as paracrine effector has established them as key elements in tissue repair. Recently, extracellular vesicles (EVs) shed by MSCs have emerged as a promising cell free therapy. This comprehensive review encompasses MSCs-derived exosomes and their therapeutic potential as nanotherapeutics. We also discuss their potency as drug delivery nano-carriers in comparison with liposomes. A better knowledge of EVs behaviour in vivo and of their mechanism of action are key to determine parameters of an optimal formulation in pilot studies and to establish industrial processes.
Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Exosomas/metabolismo , Exosomas/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Humanos , Animales , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química , Medicina Regenerativa/métodos , Nanopartículas/químicaRESUMEN
In this study, we present a new type of polymer-free hydrogel made only from nonionic surfactants, oil, and water. Such a system is produced by taking advantage of the physicochemical behavior and interactions between nonionic surfactants and oil and water phases, according to a process close to spontaneous emulsification used in the production of nano-emulsions. Contrary to the classical process of emulsion-based gel formulation, we propose a simple one-step approach. Beyond the originality of the concept, these nanoemulgels appear as very promising systems able to encapsulate and deliver various molecules with different solubilities. In the first section, we propose a comprehensive investigation of the gel formation process and its limits through oscillatory rheological characterization, characterization of the sol/gel transitions, and gel strength. The second section is focused on the follow-up of the release of an encapsulated model hydrophilic molecule and on the impact of the rheological gel properties on the release profiles.
RESUMEN
Regenerative medicine based on cell therapy has emerged as a promising approach for the treatment of various medical conditions. However, the success of cell therapy heavily relies on the development of suitable injectable hydrogels that can encapsulate cells and provide a conducive environment for their survival, proliferation, and tissue regeneration. Herein, we address the medical need for cyto- and biocompatible injectable hydrogels by reporting on the synthesis of a hydrogel-forming thermosensitive copolymer. The copolymer was synthesized by grafting poly(N-isopropylacrylamide-co-carboxymethyl acrylate) (PNIPAM-COOH) onto chitosan through amide coupling. This chemical modification resulted in the formation of hydrogels that exhibit a sol-gel transition with an onset at approximately 27 °C, making them ideal for use in injectable applications. The hydrogels supported the survival and proliferation of cells for several days, which is critical for cell encapsulation. Furthermore, the study evaluates the addition of collagen/chitosan hybrid microspheres to support the adhesion of mesenchymal stem cells within the hydrogels. Altogether, these results demonstrate the potential of the PNIPAM-chitosan thermogel for cell encapsulation and its possible applications in regenerative medicine.
Asunto(s)
Resinas Acrílicas , Materiales Biocompatibles , Quitosano , Hidrogeles , Ensayo de Materiales , Células Madre Mesenquimatosas , Microesferas , Quitosano/química , Resinas Acrílicas/química , Resinas Acrílicas/síntesis química , Hidrogeles/química , Hidrogeles/síntesis química , Hidrogeles/farmacología , Células Madre Mesenquimatosas/citología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Tamaño de la Partícula , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , HumanosRESUMEN
Reconstructing the meniscus is not currently possible due to its intricate and heterogeneous structure. In this forum, we first discuss the shortcomings of current clinical strategies in meniscus repair. Then, we describe a new promising cell-based, ink-free 3D biofabrication technology to produce tailor-made large-scale functional menisci.
Asunto(s)
Bioimpresión , Menisco , Ingeniería de Tejidos , Andamios del Tejido/químicaRESUMEN
The fundamental purpose of this study was to develop a stable lyophilised finasteride nanosystem (FNS-NS) for topical delivery. The FNS-NS was fabricated using an ultrasonication technique. The impact of two different cryoprotectants on the physicochemical characteristics of FNS-NS before and after lyophilisation was thoroughly investigated. The lyophilised FNS-NS had spherical shape with particle size lied between 188.6 nm ± 4.4 and 298.7 nm ± 4.7, low PDI values (0.26 ± 0.02 to 0.32 ± 0.02) and zeta potential ranging from -38.3 to +53.3 mV. The confocal laser microscopy depicted a comparatively higher cellular internalisation achieved for undecorated FNS-NS with respect to its chitosan-decorated counterpart. The lyophilised FNS-NS was stable for 90 days at proper storage conditions. The FNS-NS with 15% trehalose had appropriate physicochemical attributes that could be a promising carrier for topical delivery to treat androgenic alopecia.
Asunto(s)
Finasterida , Nanopartículas , Humanos , Finasterida/farmacología , Alopecia , Liofilización , Tamaño de la PartículaRESUMEN
Periodontitis is an inflammatory disease associated with anaerobic bacteria leading to the destruction of tooth-supporting tissues. Porphyromonas gingivalis is a keystone anaerobic pathogen involved in the development of severe lesions. Periodontal treatment aims to suppress subgingival biofilms and to restore tissue homeostasis. However, hypoxia impairs wound healing and promotes bacterial growth within periodontal pocket. This study aimed to evaluate the potential of local oxygen delivery through the local application of a hydrogel containing Arenicola marina's hemoglobin (M101). To this end, a hydrogel (xanthan (2%), hyaluronic acid (1%)) containing M101 (1-2 g/L) (Xn(2%)-HA(1%)-M101) was prepared and characterized. Rheological tests revealed the occurrence of high deformation without the loss of elastic properties. Dialysis experiment revealed that incorporation of M101 within the gel did not modify its oxygen transportation properties. Samples of release media of the gels (1 g/L (10%) and 2 g/L (10%) M101) decreased significantly the growth of P. gingivalis after 24 h validating its antibacterial effect. Metabolic activity measurement confirmed the cytocompatibility of Xn(2%)-HA(1%)-M101. This study suggests the therapeutic interest of Xn(2%)-HA(1%)-M101 gel to optimize treatment of periodontitis with a non-invasive approach.
Asunto(s)
Ácido Hialurónico , Periodontitis , Humanos , Hidrogeles , Oxígeno , Periodontitis/tratamiento farmacológico , Diálisis RenalRESUMEN
We have chemically modified cellulose nanofibrils (CNF) with furan and maleimide groups, and selectively labeled the modified CNF with fluorescent probes; 7-mercapto-4-methylcoumarin and fluorescein diacetate 5-maleimide, through two specific click chemistry reactions: Diels-Alder cycloaddition and the thiol-Michael reaction. Characterization by solid-state (13)C NMR and infrared spectroscopy was used to follow the surface modification and estimate the substitution degrees. We demonstrate that the two luminescent dyes could be selectively labeled onto CNF, yielding a multicolor CNF that was characterized by UV/visible and fluorescence spectroscopies. It was demonstrated that the multicolor CNF could be imaged using a confocal laser scanning microscope.