Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 14(30): 6823-6831, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37487003

RESUMEN

Organic photomechanical crystals have great promise as molecular machines, but their development has been hindered by a lack of clear theoretical design principles. While much research has focused on the choice of the molecular photochrome, density functional theory calculations here demonstrate that crystal packing has a major impact on the work densities that can be produced by a photochrome. Examination of two diarylethene molecules reveals that the predicted work densities can vary by an order of magnitude across different experimentally known crystal structures of the same species. The highest work densities occur when molecules are aligned in parallel, thereby producing a highly anisotropic photomechanical response. These results suggest that a greater emphasis on polymorph screening and/or crystal engineering could improve the work densities achieved by photomechanical engines. Finally, an inherent thermodynamic asymmetry is identified that biases photomechanical engines to exhibit higher work densities in the forward stroke direction.

2.
Chem Sci ; 14(4): 937-949, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36755715

RESUMEN

Photomechanical molecular crystals have garnered attention for their ability to transform light into mechanical work, but difficulties in characterizing the structural changes and mechanical responses experimentally have hindered the development of practical organic crystal engines. This study proposes a new computational framework for predicting the solid-state crystal-to-crystal photochemical transformations entirely from first principles, and it establishes a photomechanical engine cycle that quantifies the anisotropic mechanical performance resulting from the transformation. The approach relies on crystal structure prediction, solid-state topochemical principles, and high-quality electronic structure methods. After validating the framework on the well-studied [4 + 4] cycloadditions in 9-methyl anthracene and 9-tert-butyl anthracene ester, the experimentally-unknown solid-state transformation of 9-carboxylic acid anthracene is predicted for the first time. The results illustrate how the mechanical work is done by relaxation of the crystal lattice to accommodate the photoproduct, rather than by the photochemistry itself. The large ∼107 J m-3 work densities computed for all three systems highlight the promise of photomechanical crystal engines. This study demonstrates the importance of crystal packing in determining molecular crystal engine performance and provides tools and insights to design improved materials in silico.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...