Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Imaging Inform Med ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587766

RESUMEN

Automated segmentation tools often encounter accuracy and adaptability issues when applied to images of different pathology. The purpose of this study is to explore the feasibility of building a workflow to efficiently route images to specifically trained segmentation models. By implementing a deep learning classifier to automatically classify the images and route them to appropriate segmentation models, we hope that our workflow can segment the images with different pathology accurately. The data we used in this study are 350 CT images from patients affected by polycystic liver disease and 350 CT images from patients presenting with liver metastases from colorectal cancer. All images had the liver manually segmented by trained imaging analysts. Our proposed adaptive segmentation workflow achieved a statistically significant improvement for the task of total liver segmentation compared to the generic single-segmentation model (non-parametric Wilcoxon signed rank test, n = 100, p-value << 0.001). This approach is applicable in a wide range of scenarios and should prove useful in clinical implementations of segmentation pipelines.

2.
Behav Brain Res ; 452: 114570, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37421987

RESUMEN

Growing evidence suggests that psychopathy is related to altered connectivity within and between three large-scale brain networks that support core cognitive functions, including allocation of attention. In healthy individuals, default mode network (DMN) is involved in internally-focused attention and cognition such as self-reference. Frontoparietal network (FPN) is anticorrelated with DMN and is involved in externally-focused attention to cognitively demanding tasks. A third network, salience network (SN), is involved in detecting salient cues and, crucially, appears to play a role in switching between the two anticorrelated networks, DMN and FPN, to efficiently allocate attentional resources. Psychopathy has been related to reduced anticorrelation between DMN and FPN, suggesting SN's role in switching between these two networks may be diminished in the disorder. To test this hypothesis, we used independent component analysis to derive DMN, FPN, and SN activity in resting-state fMRI data in a sample of incarcerated men (N = 148). We entered the activity of the three networks into dynamic causal modeling to test SN's switching role. The previously established switching effect of SN among young, healthy adults was replicated in a group of low psychopathy participants (posterior model probability = 0.38). As predicted, SN's switching role was significantly diminished in high psychopathy participants (t(145) = 26.39, p < .001). These findings corroborate a novel theory of brain function in psychopathy. Future studies may use this model to test whether disrupted SN switching is related to high psychopathy individuals' abnormal allocation of attention.


Asunto(s)
Encéfalo , Cognición , Masculino , Adulto , Humanos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Imagen por Resonancia Magnética , Señales (Psicología) , Red Nerviosa/diagnóstico por imagen
3.
Mayo Clin Proc ; 98(5): 689-700, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931980

RESUMEN

OBJECTIVE: To evaluate the performance of an internally developed and previously validated artificial intelligence (AI) algorithm for magnetic resonance (MR)-derived total kidney volume (TKV) in autosomal dominant polycystic kidney disease (ADPKD) when implemented in clinical practice. PATIENTS AND METHODS: The study included adult patients with ADPKD seen by a nephrologist at our institution between November 2019 and January 2021 and undergoing an MR imaging examination as part of standard clinical care. Thirty-three nephrologists ordered MR imaging, requesting AI-based TKV calculation for 170 cases in these 161 unique patients. We tracked implementation and performance of the algorithm over 1 year. A radiologist and a radiology technologist reviewed all cases (N=170) for quality and accuracy. Manual editing of algorithm output occurred at radiology or radiology technologist discretion. Performance was assessed by comparing AI-based and manually edited segmentations via measures of similarity and dissimilarity to ensure expected performance. We analyzed ADPKD severity class assignment of algorithm-derived vs manually edited TKV to assess impact. RESULTS: Clinical implementation was successful. Artificial intelligence algorithm-based segmentation showed high levels of agreement and was noninferior to interobserver variability and other methods for determining TKV. Of manually edited cases (n=84), the AI-algorithm TKV output showed a small mean volume difference of -3.3%. Agreement for disease class between AI-based and manually edited segmentation was high (five cases differed). CONCLUSION: Performance of an AI algorithm in real-life clinical practice can be preserved if there is careful development and validation and if the implementation environment closely matches the development conditions.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Adulto , Humanos , Riñón Poliquístico Autosómico Dominante/diagnóstico por imagen , Inteligencia Artificial , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Algoritmos , Espectroscopía de Resonancia Magnética
4.
Hum Brain Mapp ; 44(16): 5238-5293, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36537283

RESUMEN

We propose a unique, minimal assumption, approach based on variance analyses (compared with standard approaches) to investigate genetic influence on individual differences on the functional connectivity of the brain using 65 monozygotic and 65 dizygotic healthy young adult twin pairs' low-frequency oscillation resting state functional Magnetic Resonance Imaging (fMRI) data from the Human Connectome Project. Overall, we found high number of genetically-influenced functional (GIF) connections involving posterior to posterior brain regions (occipital/temporal/parietal) implicated in low-level processes such as vision, perception, motion, categorization, dorsal/ventral stream visuospatial, and long-term memory processes, as well as high number across midline brain regions (cingulate) implicated in attentional processes, and emotional responses to pain. We found low number of GIF connections involving anterior to anterior/posterior brain regions (frontofrontal > frontoparietal, frontotemporal, frontooccipital) implicated in high-level processes such as working memory, reasoning, emotional judgment, language, and action planning. We found very low number of GIF connections involving subcortical/noncortical networks such as basal ganglia, thalamus, brainstem, and cerebellum. In terms of sex-specific individual differences, individual differences in males were more genetically influenced while individual differences in females were more environmentally influenced in terms of the interplay of interactions of Task positive networks (brain regions involved in various task-oriented processes and attending to and interacting with environment), extended Default Mode Network (a central brain hub for various processes such as internal monitoring, rumination, and evaluation of self and others), primary sensorimotor systems (vision, audition, somatosensory, and motor systems), and subcortical/noncortical networks. There were >8.5-19.1 times more GIF connections in males than females. These preliminary (young adult cohort-specific) findings suggest that individual differences in the resting state brain may be more genetically influenced in males and more environmentally influenced in females; furthermore, standard approaches may suggest that it is more substantially nonadditive genetics, rather than additive genetics, which contribute to the differences in sex-specific individual differences based on this young adult (male and female) specific cohort. Finally, considering the preliminary cohort-specific results, based on standard approaches, environmental influences on individual differences may be substantially greater than that of genetics, for either sex, frontally and brain-wide. [Correction added on 10 May 2023, after first online publication: added: functional Magnetic Resonance Imaging. Added: individual differences in, twice. Added statement between furthermore … based on standard approaches.].


Asunto(s)
Encéfalo , Conectoma , Femenino , Humanos , Masculino , Adulto Joven , Ganglios Basales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico , Conectoma/métodos , Imagen por Resonancia Magnética , Red Nerviosa/fisiología , Tálamo , Gemelos Dicigóticos
5.
Neuroimage Clin ; 27: 102341, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32707534

RESUMEN

This study explored the taxonomy of cognitive impairment within temporal lobe epilepsy and characterized the sociodemographic, clinical and neurobiological correlates of identified cognitive phenotypes. 111 temporal lobe epilepsy patients and 83 controls (mean ages 33 and 39, 57% and 61% female, respectively) from the Epilepsy Connectome Project underwent neuropsychological assessment, clinical interview, and high resolution 3T structural and resting-state functional MRI. A comprehensive neuropsychological test battery was reduced to core cognitive domains (language, memory, executive, visuospatial, motor speed) which were then subjected to cluster analysis. The resulting cognitive subgroups were compared in regard to sociodemographic and clinical epilepsy characteristics as well as variations in brain structure and functional connectivity. Three cognitive subgroups were identified (intact, language/memory/executive function impairment, generalized impairment) which differed significantly, in a systematic fashion, across multiple features. The generalized impairment group was characterized by an earlier age at medication initiation (P < 0.05), fewer patient (P < 0.001) and parental years of education (P < 0.05), greater racial diversity (P < 0.05), and greater number of lifetime generalized seizures (P < 0.001). The three groups also differed in an orderly manner across total intracranial (P < 0.001) and bilateral cerebellar cortex volumes (P < 0.01), and rate of bilateral hippocampal atrophy (P < 0.014), but minimally in regional measures of cortical volume or thickness. In contrast, large-scale patterns of cortical-subcortical covariance networks revealed significant differences across groups in global and local measures of community structure and distribution of hubs. Resting-state fMRI revealed stepwise anomalies as a function of cluster membership, with the most abnormal patterns of connectivity evident in the generalized impairment group and no significant differences from controls in the cognitively intact group. Overall, the distinct underlying cognitive phenotypes of temporal lobe epilepsy harbor systematic relationships with clinical, sociodemographic and neuroimaging correlates. Cognitive phenotype variations in patient and familial education and ethnicity, with linked variations in total intracranial volume, raise the question of an early and persisting socioeconomic-status related neurodevelopmental impact, with additional contributions of clinical epilepsy factors (e.g., lifetime generalized seizures). The neuroimaging features of cognitive phenotype membership are most notable for disrupted large scale cortical-subcortical networks and patterns of functional connectivity with bilateral hippocampal and cerebellar atrophy. The cognitive taxonomy of temporal lobe epilepsy appears influenced by features that reflect the combined influence of socioeconomic, neurodevelopmental and neurobiological risk factors.


Asunto(s)
Conectoma , Epilepsia del Lóbulo Temporal , Adulto , Cognición , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Fenotipo
6.
Neuroimage Clin ; 25: 102183, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32058319

RESUMEN

The association of epilepsy with structural brain changes and cognitive abnormalities in midlife has raised concern regarding the possibility of future accelerated brain and cognitive aging and increased risk of later life neurocognitive disorders. To address this issue we examined age-related processes in both structural and functional neuroimaging among individuals with temporal lobe epilepsy (TLE, N = 104) who were participants in the Epilepsy Connectome Project (ECP). Support vector regression (SVR) models were trained from 151 healthy controls and used to predict TLE patients' brain ages. It was found that TLE patients on average have both older structural (+6.6 years) and functional (+8.3 years) brain ages compared to healthy controls. Accelerated functional brain age (functional - chronological age) was mildly correlated (corrected P = 0.07) with complex partial seizure frequency and the number of anti-epileptic drug intake. Functional brain age was a significant correlate of declining cognition (fluid abilities) and partially mediated chronological age-fluid cognition relationships. Chronological age was the only positive predictor of crystallized cognition. Accelerated aging is evident not only in the structural brains of patients with TLE, but also in their functional brains. Understanding the causes of accelerated brain aging in TLE will be clinically important in order to potentially prevent or mitigate their cognitive deficits.


Asunto(s)
Envejecimiento Prematuro , Corteza Cerebral , Envejecimiento Cognitivo , Disfunción Cognitiva , Conectoma/métodos , Epilepsia del Lóbulo Temporal , Adulto , Factores de Edad , Envejecimiento Prematuro/diagnóstico por imagen , Envejecimiento Prematuro/etiología , Envejecimiento Prematuro/patología , Envejecimiento Prematuro/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Envejecimiento Cognitivo/fisiología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Máquina de Vectores de Soporte , Adulto Joven
7.
Epilepsy Behav ; 98(Pt A): 220-227, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31387000

RESUMEN

Behavioral and personality disorders in temporal lobe epilepsy (TLE) have been a topic of interest and controversy for decades, with less attention paid to alterations in normal personality structure and traits. In this investigation, core personality traits (the Big 5) and their neurobiological correlates in TLE were explored using the Neuroticism Extraversion Openness-Five Factor Inventory (NEO-FFI) and structural magnetic resonance imaging (MRI) through the Epilepsy Connectome Project (ECP). NEO-FFI scores from 67 individuals with TLE (34.6 ±â€¯9.5 years; 67% women) were compared to 31 healthy controls (32.8 ±â€¯8.9 years; 41% women) to assess differences in the Big 5 traits (agreeableness, openness, conscientiousness, neuroticism, and extraversion). Individuals with TLE showed significantly higher neuroticism, with no significant differences on the other traits. Neural correlates of neuroticism were then determined in participants with TLE including cortical and subcortical volumes. Distributed reductions in cortical gray matter volumes were associated with increased neuroticism. Subcortically, hippocampal and amygdala volumes were negatively associated with neuroticism. These results offer insight into alterations in the Big 5 personality traits in TLE and their brain-related correlates.


Asunto(s)
Encéfalo/diagnóstico por imagen , Conectoma/métodos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Neuroticismo , Inventario de Personalidad , Adulto , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiología , Encéfalo/fisiología , Epilepsia del Lóbulo Temporal/psicología , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Neuroticismo/fisiología , Personalidad/fisiología
8.
Brain Connect ; 9(2): 184-193, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30803273

RESUMEN

The National Institutes of Health-sponsored Epilepsy Connectome Project aims to characterize connectivity changes in temporal lobe epilepsy (TLE) patients. The magnetic resonance imaging protocol follows that used in the Human Connectome Project, and includes 20 min of resting-state functional magnetic resonance imaging acquired at 3T using 8-band multiband imaging. Glasser parcellation atlas was combined with the FreeSurfer subcortical regions to generate resting-state functional connectivity (RSFC), amplitude of low-frequency fluctuations (ALFFs), and fractional ALFF measures. Seven different frequency ranges such as Slow-5 (0.01-0.027 Hz) and Slow-4 (0.027-0.073 Hz) were selected to compute these measures. The goal was to train machine learning classification models to discriminate TLE patients from healthy controls, and to determine which combination of the resting state measure and frequency range produced the best classification model. The samples included age- and gender-matched groups of 60 TLE patients and 59 healthy controls. Three traditional machine learning models were trained: support vector machine, linear discriminant analysis, and naive Bayes classifier. The highest classification accuracy was obtained using RSFC measures in the Slow-4 + 5 band (0.01-0.073 Hz) as features. Leave-one-out cross-validation accuracies were ∼83%, with receiver operating characteristic area-under-the-curve reaching close to 90%. Increased connectivity from right area posterior 9-46v in TLE patients contributed to the high accuracies. With increased sample sizes in the near future, better machine learning models will be trained not only to aid the diagnosis of TLE, but also as a tool to understand this brain disorder.


Asunto(s)
Conectoma/métodos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/fisiopatología , Adulto , Teorema de Bayes , Encéfalo/fisiopatología , Femenino , Lateralidad Funcional , Hipocampo/fisiopatología , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Máquina de Vectores de Soporte , Lóbulo Temporal/fisiopatología
9.
Brain Connect ; 9(2): 174-183, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30398367

RESUMEN

The Epilepsy Connectome Project examines the differences in connectomes between temporal lobe epilepsy (TLE) patients and healthy controls. Using these data, the effective connectivity of the default mode network (DMN) in patients with left TLE compared with healthy controls was investigated using spectral dynamic causal modeling (spDCM) of resting-state functional magnetic resonance imaging data. Group comparisons were made using two parametric empirical Bayes (PEB) models. The first level of each PEB model consisted of each participant's spDCM. Two different second-level models were constructed: the first comparing effective connectivity of the groups directly and the second using the Rey Auditory Verbal Learning Test (RAVLT) delayed free recall index as a covariate at the second level to assess effective connectivity controlling for the poor memory performance of left TLE patients. After an automated search over the nested parameter space and thresholding parameters at 95% posterior probability, both models revealed numerous connections in the DMN, which lead to inhibition of the left hippocampal formation. Left hippocampal formation inhibition may be an inherent result of the left temporal epileptogenic focus as memory differences were controlled for in one model and the same connections remained. An excitatory connection from the posterior cingulate cortex to the medial prefrontal cortex was found to be concomitant with left hippocampal formation inhibition in TLE patients when including RAVLT delayed free recall at the second level.


Asunto(s)
Conectoma/métodos , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia/fisiopatología , Adulto , Teorema de Bayes , Encéfalo/fisiopatología , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Femenino , Lateralidad Funcional/fisiología , Hipocampo/fisiopatología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiopatología , Vías Nerviosas/fisiopatología , Corteza Prefrontal/fisiopatología , Lóbulo Temporal/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA