Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 13(3): R21, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22445104

RESUMEN

BACKGROUND: Chromosomal deletions are used extensively in Drosophila melanogaster genetics research. Deletion mapping is the primary method used for fine-scale gene localization. Effective and efficient deletion mapping requires both extensive genomic coverage and a high density of molecularly defined breakpoints across the genome. RESULTS: A large-scale resource development project at the Bloomington Drosophila Stock Center has improved the choice of deletions beyond that provided by previous projects. FLP-mediated recombination between FRT-bearing transposon insertions was used to generate deletions, because it is efficient and provides single-nucleotide resolution in planning deletion screens. The 793 deletions generated pushed coverage of the euchromatic genome to 98.4%. Gaps in coverage contain haplolethal and haplosterile genes, but the sizes of these gaps were minimized by flanking these genes as closely as possible with deletions. In improving coverage, a complete inventory of haplolethal and haplosterile genes was generated and extensive information on other haploinsufficient genes was compiled. To aid mapping experiments, a subset of deletions was organized into a Deficiency Kit to provide maximal coverage efficiently. To improve the resolution of deletion mapping, screens were planned to distribute deletion breakpoints evenly across the genome. The median chromosomal interval between breakpoints now contains only nine genes and 377 intervals contain only single genes. CONCLUSIONS: Drosophila melanogaster now has the most extensive genomic deletion coverage and breakpoint subdivision as well as the most comprehensive inventory of haploinsufficient genes of any multicellular organism. The improved selection of chromosomal deletion strains will be useful to nearly all Drosophila researchers.


Asunto(s)
Deleción Cromosómica , Cromosomas/genética , Drosophila melanogaster/genética , Genoma de los Insectos , Haplotipos/genética , Animales , Puntos de Rotura del Cromosoma , Mapeo Cromosómico , Elementos Transponibles de ADN/genética , Genómica , Haploinsuficiencia/genética
2.
Genetics ; 186(4): 1095-109, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20876560

RESUMEN

Interchromosomal duplications are especially important for the study of X-linked genes. Males inheriting a mutation in a vital X-linked gene cannot survive unless there is a wild-type copy of the gene duplicated elsewhere in the genome. Rescuing the lethality of an X-linked mutation with a duplication allows the mutation to be used experimentally in complementation tests and other genetic crosses and it maps the mutated gene to a defined chromosomal region. Duplications can also be used to screen for dosage-dependent enhancers and suppressors of mutant phenotypes as a way to identify genes involved in the same biological process. We describe an ongoing project in Drosophila melanogaster to generate comprehensive coverage and extensive breakpoint subdivision of the X chromosome with megabase-scale X segments borne on Y chromosomes. The in vivo method involves the creation of X inversions on attached-XY chromosomes by FLP-FRT site-specific recombination technology followed by irradiation to induce large internal X deletions. The resulting chromosomes consist of the X tip, a medial X segment placed near the tip by an inversion, and a full Y. A nested set of medial duplicated segments is derived from each inversion precursor. We have constructed a set of inversions on attached-XY chromosomes that enable us to isolate nested duplicated segments from all X regions. To date, our screens have provided a minimum of 78% X coverage with duplication breakpoints spaced a median of nine genes apart. These duplication chromosomes will be valuable resources for rescuing and mapping X-linked mutations and identifying dosage-dependent modifiers of mutant phenotypes.


Asunto(s)
Tecnología Biomédica/métodos , Drosophila melanogaster/genética , Duplicación de Gen , Genes Ligados a X/genética , Cromosoma X/genética , Cromosoma Y/genética , Animales , Masculino , Métodos , Mutación , Recombinación Genética/genética
3.
Curr Biol ; 12(17): 1462-72, 2002 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-12225661

RESUMEN

BACKGROUND: Plant development is exquisitely sensitive to light. Seedlings grown in the dark have a developmentally arrested etiolated phenotype, whereas in the light they develop leaves and complete their life cycle. Arabidopsis de-etiolated 1 (det1) mutants develop like light-grown seedlings even when grown in the dark. DET1 encodes a nuclear protein that appears to act downstream from multiple photoreceptors to regulate morphogenesis and gene expression in response to light. However, its function has remained unknown. RESULTS: We used microarrays to examine defects in transcription in dark-grown det1 seedlings. We found extensive changes in gene expression, including many of the transcriptional responses observed in light-treated wild-type seedlings. We used an epitope-tagging approach to determine the basis of DET1 function. GFP-DET1 rescues the det1 phenotype, is localized to the nucleus, and forms an approximately 350 kDa complex, which is required for full DET1 activity. We affinity-purified the DET1 complex and identified an approximately 120 kDa copurifying protein that is the plant homolog of UV-Damaged DNA Binding Protein 1 (DDB1), a protein implicated in the human disease xeroderma pigmentosa. A null mutation in Arabidopsis DDB1A results in no obvious phenotype on its own, yet it enhances the phenotype of a weak det1 allele. CONCLUSIONS: DET1 and DDB1 interact both biochemically and genetically. In animal cells, DDB1 interacts with histone acetyltransferase complexes. The DET1/DDB1 complex may regulate gene expression in response to light via recruitment of HAT activity. Thus, DET1, whose sequence is conserved in both animals and plants, may play a direct role in the regulation of many genes.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Proteínas de Unión al ADN/fisiología , Epistasis Genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Proteínas Nucleares/fisiología , Acetiltransferasas/fisiología , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Grupos de Población Animal/genética , Animales , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Oscuridad , Epítopos , Perfilación de la Expresión Génica , Histona Acetiltransferasas , Péptidos y Proteínas de Señalización Intracelular , Sustancias Macromoleculares , Modelos Biológicos , Datos de Secuencia Molecular , Morfogénesis/genética , Morfogénesis/efectos de la radiación , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Mapeo de Interacción de Proteínas , Proteínas Recombinantes de Fusión/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Plantones/fisiología , Plantones/efectos de la radiación , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transcripción Genética/genética , Transcripción Genética/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...