Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Front Cardiovasc Med ; 10: 1105581, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844730

RESUMEN

More than 50% of patients with heart failure present with heart failure with preserved ejection fraction (HFpEF), and 80% of them are overweight or obese. In this study we developed an obesity associated pre-HFpEF mouse model and showed an improvement in both systolic and diastolic early dysfunction following fecal microbiome transplant (FMT). Our study suggests that the gut microbiome-derived short-chain fatty acid butyrate plays a significant role in this improvement. Cardiac RNAseq analysis showed butyrate to significantly upregulate ppm1k gene that encodes protein phosphatase 2Cm (PP2Cm) which dephosphorylates and activates branched-chain α-keto acid dehydrogenase (BCKDH) enzyme, and in turn increases the catabolism of branched chain amino acids (BCAAs). Following both FMT and butyrate treatment, the level of inactive p-BCKDH in the heart was reduced. These findings show that gut microbiome modulation can alleviate early cardiac mechanics dysfunction seen in the development of obesity associated HFpEF.

3.
Gut Microbes ; 14(1): 2068365, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35482894

RESUMEN

Trillions of bacteria reside within our gastrointestinal tract, ideally forming a mutually beneficial relationship between us. However, persistent changes in diet and lifestyle in the western diet and lifestyle contribute to a damaging of the gut microbiota-host symbiosis leading to diseases such as obesity and irritable bowel syndrome. Many symptoms and comorbidities associated with these diseases stem from dysfunctional signaling in peripheral neurons. Our peripheral nervous system (PNS) is comprised of a variety of sensory, autonomic, and enteric neurons which coordinate key homeostatic functions such as gastrointestinal motility, digestion, immunity, feeding behavior, glucose and lipid homeostasis, and more. The composition and signaling of bacteria in our gut dramatically influences how our peripheral neurons regulate these functions, and we are just beginning to uncover the molecular mechanisms mediating this communication. In this review, we cover the general anatomy and function of the PNS, and then we discuss how the molecules secreted or stimulated by gut microbes signal through the PNS to alter host development and physiology. Finally, we discuss how leveraging the power of our gut microbes on peripheral nervous system signaling may offer effective therapies to counteract the rise in chronic diseases crippling the western world.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad Crónica , Dieta , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Humanos , Sistema Nervioso Periférico
4.
Mol Metab ; 54: 101350, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34626852

RESUMEN

OBJECTIVE: The vagus nerve provides a direct line of communication between the gut and the brain for proper regulation of energy balance and glucose homeostasis. Short-chain fatty acids (SCFAs) produced via gut microbiota fermentation of dietary fiber have been proposed to regulate host metabolism and feeding behavior via the vagus nerve, but the molecular mechanisms have not yet been elucidated. We sought to identify the G-protein-coupled receptors within vagal neurons that mediate the physiological and therapeutic benefits of SCFAs. METHODS: SCFA, particularly propionate, signaling occurs via free fatty acid receptor 3 (FFAR3), that we found expressed in vagal sensory neurons innervating throughout the gut. The lack of cell-specific animal models has impeded our understanding of gut/brain communication; therefore, we generated a mouse model for cre-recombinase-driven deletion of Ffar3. We comprehensively characterized the feeding behavior of control and vagal-FFAR3 knockout (KO) mice in response to various conditions including fasting/refeeding, western diet (WD) feeding, and propionate supplementation. We also utilized ex vivo organotypic vagal cultures to investigate the signaling pathways downstream of propionate FFAR3 activation. RESULTS: Vagal-FFAR3KO led to increased meal size in males and females, and increased food intake during fasting/refeeding and WD challenges. In addition, the anorectic effect of propionate supplementation was lost in vagal-FFAR3KO mice. Sequencing approaches combining ex vivo and in vivo experiments revealed that the cross-talk of FFAR3 signaling with cholecystokinin (CCK) and leptin receptor pathways leads to alterations in food intake. CONCLUSION: Altogether, our data demonstrate that FFAR3 expressed in vagal neurons regulates feeding behavior and mediates propionate-induced decrease in food intake.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Nervio Vago/metabolismo , Animales , Conducta Alimentaria , Microbioma Gastrointestinal , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Acoplados a Proteínas G/genética
5.
Proc Natl Acad Sci U S A ; 117(42): 26482-26493, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33020290

RESUMEN

Obesity affects over 2 billion people worldwide and is accompanied by peripheral neuropathy (PN) and an associated poorer quality of life. Despite high prevalence, the molecular mechanisms underlying the painful manifestations of PN are poorly understood, and therapies are restricted to use of painkillers or other drugs that do not address the underlying disease. Studies have demonstrated that the gut microbiome is linked to metabolic health and its alteration is associated with many diseases, including obesity. Pathologic changes to the gut microbiome have recently been linked to somatosensory pain, but any relationships between gut microbiome and PN in obesity have yet to be explored. Our data show that mice fed a Western diet developed indices of PN that were attenuated by concurrent fecal microbiome transplantation (FMT). In addition, we observed changes in expression of genes involved in lipid metabolism and calcium handling in cells of the peripheral nerve system (PNS). FMT also induced changes in the immune cell populations of the PNS. There was a correlation between an increase in the circulating short-chain fatty acid butyrate and pain improvement following FMT. Additionally, butyrate modulated gene expression and immune cells in the PNS. Circulating butyrate was also negatively correlated with distal pain in 29 participants with varied body mass index. Our data suggest that the metabolite butyrate, secreted by the gut microbiome, underlies some of the effects of FMT. Targeting the gut microbiome, butyrate, and its consequences may represent novel viable approaches to prevent or relieve obesity-associated neuropathies.


Asunto(s)
Trasplante de Microbiota Fecal/métodos , Obesidad/microbiología , Enfermedades del Sistema Nervioso Periférico/terapia , Animales , Butiratos/metabolismo , Dieta Alta en Grasa , Dieta Occidental , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Expresión Génica , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Microbiota , Neuralgia/metabolismo , Obesidad/fisiopatología , Sistema Nervioso Periférico/metabolismo , Sistema Nervioso Periférico/fisiología
6.
Metabolism ; 102: 153990, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31666192

RESUMEN

OBJECTIVE: Rates of overweight and obesity epidemic have risen significantly in the past few decades, and 34% of adults and 15-20% of children and adolescents in the United States are now obese. Melanocortin receptor 4 (MC4R), contributes to appetite control in hypothalamic neurons and is a target for future anti-obesity treatments (such as setmelanotide) or novel drug development effort. Proper MC4R trafficking regulation in hypothalamic neurons is crucial for normal neural control of homeostasis and is altered in obesity and in presence of lipids. The mechanisms underlying altered MC4R trafficking in the context of obesity is still unclear. Here, we discovered that C2CD5 expressed in the hypothalamus is involved in the regulation of MC4R endocytosis. This study unmasked a novel trafficking protein nutritionally regulated in the hypothalamus providing a novel target for MC4R dependent pathways involved in bodyweight homeostasis and Obesity. METHODS: To evaluate the expression of C2cd5, we first used in situ hybridization and RNAscope technology in combination with electronic microscopy. For in vivo, we characterized the energy balance of wild type (WT) and C2CD5 whole-body knockout (C2CD5KO) mice fed normal chow (NC) and/or western-diet (high-fat/high-sucrose/cholesterol) (WD). To this end, we performed comprehensive longitudinal assessment of bodyweight, energy balance (food intake, energy expenditure, locomotor activity using TSE metabolic cages), and glucose homeostasis. In addition, we evaluated the consequence of loss of C2CD5 on feeding behavior changes normally induced by MC4R agonist (Melanotan, MTII) injection in the paraventricular hypothalamus (PVH). For in vitro approach, we tease out the role of C2CD5 and its calcium sensing domain C2 in MC4R trafficking. We focused on endocytosis of MC4R using an antibody feeding experiment (in a neuronal cell line - Neuro2A (N2A) stably expressing HA-MC4R-GFP; against HA-tag and analyzed by flux cytometry). RESULTS: We found that 1) the expression of hypothalamic C2CD5 is decreased in diet-induced obesity models compared to controls, 2) mice lacking C2CD5 exhibit an increase in food intake compared to WT mice, 3) C2CD5 interacts with endocytosis machinery in hypothalamus, 4) loss of functional C2CD5 (lacking C2 domain) blunts MC4R endocytosis in vitro and increases MC4R at the surface that fails to respond to MC4R ligand, and, 5) C2CD5KO mice exhibit decreased acute responses to MTII injection into the PVH. CONCLUSIONS: Based on these, we conclude that hypothalamic C2CD5 is involved in MC4R endocytosis and regulate bodyweight homeostasis. These studies suggest that C2CD5 represents a new protein regulated by metabolic cues and involved in metabolic receptor endocytosis. C2CD5 represent a new target and pathway that could be targeted in Obesity.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Metabolismo Energético/genética , Hipotálamo/metabolismo , Proteínas de la Membrana/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo , Animales , Peso Corporal/genética , Proteínas de Unión al Calcio/genética , Células Cultivadas , Conducta Alimentaria/fisiología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/fisiología , Obesidad/genética , Obesidad/metabolismo , Obesidad/fisiopatología , Transporte de Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...