Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small Methods ; 8(3): e2301144, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38009769

RESUMEN

The flash Joule heating (FJH) method converts many carbon feedstocks into graphene in milliseconds to seconds using an electrical pulse. This opens an opportunity for processing low or negative value resources, such as coal and plastic waste, into high value graphene. Here, a lab-scale automation FJH system that allows the synthesis of 1.1 kg of turbostratic flash graphene from coal-based metallurgical coke (MC) in 1.5 h is demonstrated. The process is based on the automated conversion of 5.7 g of MC per batch using an electrical pulse width modulation system to conduct the bottom-up upcycle of MC into flash graphene. This study then compare this method to two other scalable graphene synthesis techniques by both a life cycle assessment and a technoeconomic assessment.

2.
Soft Matter ; 12(29): 6196-205, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27383924

RESUMEN

Fluorescence spectroscopy was employed to characterize the kinetics of guest exchange in diblock copolymer micelles composed of poly(ethylene oxide-b-ε-caprolactone) (PEO-PCL) diblock copolymers in water/tetrahydrofuran (THF) mixtures which encapsulated fluorophores. The solvent composition (THF content) of the micelle solution was varied as a means of modulating the strength of interactions between the fluorophore and solvent as well as between the micelle core and solvent. A donor-acceptor fluorophore pair was employed consisting of 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO, the donor) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI, the acceptor). Through the process of Förster resonance energy transfer (FRET), energy was transferred from the donor to acceptor when the fluorophores were in close proximity. A micelle solution containing DiO was mixed with a micelle solution containing DiI at t = 0, and the emission spectra of the mixed solution were monitored over time (at an excitation wavelength optimized for the donor). In micelle solutions containing 5 and 10 vol% THF in the bulk solvent, an increase in the acceptor peak intensity maximum occurred over time in the post-mixed solution, accompanied by a decrease in the donor peak intensity maximum, indicating the presence of energy transfer from the donor to the acceptor. At long times, the FRET ratios (acceptor peak intensity divided by the sum of the acceptor and donor peak intensities) were indistinguishable from that determined from pre-mixed micelle solutions of the same THF content (in pre-mixed solutions, DiO and DiI were encapsulated within the same micelle cores). In the micelle solution containing 20 vol% THF, the fluorophore exchange process occurred too quickly to be observed (the FRET ratios measured from the solutions mixed at t = 0 were commensurate to that measured from the pre-mixed solution). A time constant describing the guest exchange process was extracted from the time-dependence of the FRET ratio through fit of an exponential decay. An increase in the THF content in the micelle solution resulted in a decrease in the time constant, and the time constant varied over five orders of magnitude as the THF content was varied from 5-20 vol%.

3.
Macromol Rapid Commun ; 35(22): 1937-42, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25283950

RESUMEN

Micromolding surface-initiated polymerization enables the fabrication of polymer coatings that reproduce the microscale surface topography of superhydrophobic leaves onto solid supports. Here, the surfaces of superhydrophobic leaves from Trifolium repens and Aristolochia esperanzae are molded and reproduced as the topography of a partially fluorinated polymer coating through the surface-initiated ring-opening metathesis polymerization of 5-(perfluorooctyl)norbornene (NBF8). The polymer coatings have thicknesses exceeding 100 µm, which can be tailored by the amount of monomer added to the mold. These coatings are robustly bound to the substrate, contain compositions not found in nature, and achieve superhydrophobicity that is comparable to the actual leaf.


Asunto(s)
Aristolochia/química , Materiales Biocompatibles Revestidos/química , Hojas de la Planta/química , Polímeros/química , Trifolium/química , Materiales Biocompatibles Revestidos/síntesis química , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Polimerizacion , Polímeros/síntesis química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...