Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proteins ; 92(3): 427-431, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37921533

RESUMEN

A 1.7 Å structure is presented for an active form of the virulence factor ScpB, the C5a peptidase from Streptococcus agalactiae. The previously reported structure of the ScpB active site mutant exhibited a large separation (~20 Å) between the catalytic His and Ser residues. Significant differences are observed in the catalytic domain between the current and mutant ScpB structures resulting with a high RMSDCα (4.6 Å). The fold of the active form of ScpB is nearly identical to ScpA (RMSDCα 0.2 Å), the C5a-peptidase from Streptococcus pyogenes. Both ScpA and ScpB have comparable activity against human C5a, indicating neither enzyme require host proteins for C5a-ase activity. These studies are a first step in resolving reported differences in the specificities of these enzymes.


Asunto(s)
Endopeptidasas , Streptococcus agalactiae , Humanos , Streptococcus agalactiae/metabolismo , Dominio Catalítico , Endopeptidasas/química , Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Catálisis , Streptococcus pyogenes
2.
Front Microbiol ; 14: 1289374, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029085

RESUMEN

Introduction: The chronic inflammatory skin disease Hidradenitis suppurativa (HS) is strongly associated with Crohn's Disease (CD). HS and CD share clinical similarities and similar inflammatory pathways are upregulated in both conditions. Increased prevalence of inflammatory disease in industrialised nations has been linked to the Western diet. However, gut microbiota composition and diet interaction have not been compared in HS and CD. Methods: Here we compared the fecal microbiota (16S rRNA gene amplicon sequencing) and habitual diet of previously reported subjects with HS (n = 55), patients with CD (n = 102) and controls (n = 95). Results and discussion: Patients with HS consumed a Western diet similar to patients with CD. Meanwhile, habitual diet in HS and CD was significantly different to controls. Previously, we detected differences in microbiota composition among patients with HS from that of controls. We now show that 40% of patients with HS had a microbiota configuration similar to that of CD, characterised by the enrichment of pathogenic genera (Enterococcus, Veillonella and Escherichia_Shigella) and the depletion of putatively beneficial genera (Faecalibacterium). The remaining 60% of patients with HS harboured a normal microbiota similar to that of controls. Antibiotics, which are commonly used to treat HS, were identified as a co-varying with differences in microbiota composition. We examined the levels of several inflammatory markers highlighting that growth-arrest specific 6 (Gas6), which has anti-inflammatory potential, were significantly lower in the 40% of patients with HS who had a CD microbiota configuration. Levels of the pro-inflammatory cytokine IL-12, which is a modulator of intestinal inflammation in CD, were negatively correlated with the abundance of health-associated genera in patients with HS. In conclusion, the fecal microbiota may help identify patients with HS who are at greater risk for development of CD.

3.
Data Brief ; 46: 108778, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36478677

RESUMEN

The Streptococcal C5a peptidase (ScpA) specifically inactivates the human complement factor hC5a, a potent anaphylatoxin recently identified as a therapeutic target for treatment of COVID-19 infections. Engineering of ScpA to enhance its potential as a therapeutic will require detailed examination of the basis for its highly selective activity. The emerging view of ScpA and related subtilases is that selection of their substrates is a dynamic two-step process involving flexibility in the domains around the active site and in the C-ter of the substrate. Surface plasmon resonance (SPR) analyses of the ScpA-hC5a interaction have shown that high affinity binding of the substrate is driven by electrostatic interactions between an exosite on the Fn2 domain of the enzyme and the bulky N-ter cleavage product (PN, 'core' residues 1-67) of C5a [1]. Introduction of a D783A mutation in the Fn2 exosite, located approximately 50 Å from the catalytic serine, was shown to significantly reduce substrate binding affinity and k cat of the enzyme. X-ray crystallographic studies on the D783A mutant (ScpAD783A) were undertaken to better interpret the impact of this mutation on the specificity and activity of ScpA. Here we present the 1.9 Å X-ray diffraction data for ScpAD783A and the molecular replacement solution for the structure. Both raw diffraction images and coordinates have been made available on public databases. Additional details on the related SPR and enzyme kinetics analyses on ScpAD783A reported in Jain et al. [2].

4.
Comput Struct Biotechnol J ; 20: 4860-4869, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147677

RESUMEN

The C5a peptidase from Streptococcus pyogenes (ScpA) is a highly specific enzyme with potential therapeutic value. ScpA is a good model for studying determinants of specificity in the multidomain immunomodulatory enzymes (IMEs), which comprise a large family of bacterial surface proteases. The surface exposed region of ScpA has 5 main domains which includes 3 C-terminal Fn3-like domains (Fn1, Fn2 and Fn3) (Kagawa et al. 2009). Progressive deletion of the Fn3-like domains from the C-ter resulted in loss of enzyme activity and showed an important role for the Fn2 domain in enzyme function. Functional investigation of specific acidic residues on the Fn2 domain identified 3 residues 30-50 Å from the catalytic site (D783, E864 and D889) which impacted to differing degrees on binding and on catalysis, supporting the presence of an exosite on the Fn2. In particular, residue D783 was observed to impact on both substrate binding affinity and the activity of ScpA. A double mutant cycle analysis showed energetic coupling between the targeted ScpA residues and residues in the core portion (residues 1-67) of the C5a substrate. The data supports the presence of a communication network between the active site and the exosite on Fn2. These findings provide a basis for rational engineering of this important enzyme family to enhance stability, activity and/or specificity.

5.
Comput Struct Biotechnol J ; 19: 2356-2365, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897974

RESUMEN

The Streptococcal C5a peptidase (ScpA) specifically inactivates the human complement factor hC5a, a potent anaphylatoxin recently identified as a therapeutic target for treatment of COVID-19 infections. Biologics used to modulate hC5a are predominantly monoclonal antibodies. Here we present data to support an alternative therapeutic approach based on the specific inactivation of hC5a by ScpA in studies using recombinant hC5a (rhC5a). Initial characterization of ScpA confirmed activity in human serum and against rhC5a desArg (rhC5adR), the predominant hC5a form in blood. A new FRET based enzyme assay showed that ScpA cleaved rhC5a at near physiological concentrations (K m 185 nM). Surface Plasmon Resonance (SPR) and Isothermal Titration Calorimetry (ITC) studies established a high affinity ScpA-rhC5a interaction (K D 34 nM, K D ITC 30.8 nM). SPR analyses also showed that substrate binding is dominated (88% of ΔG°bind) by interactions with the bulky N-ter cleavage product (PN, 'core' residues 1-67) with interactions involving the C-ter R74 contributing most of the remaining ΔG°bind. Furthermore, reduced binding affinity following mutation of a subset of positively charged Arginine residues of PN and in the presence of higher salt concentrations, highlighted the importance of electrostatic interactions. These data provide the first in-depth study of the ScpA-C5a interaction and indicate that ScpA's ability to efficiently cleave physiological concentrations of C5a is driven by electrostatic interactions between an exosite on the enzyme and the 'core' of C5a. The results and methods described herein will facilitate engineering of ScpA to enhance its potential as a therapeutic for excessive immune response to infectious disease.

6.
Nat Commun ; 6: 8322, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26415554

RESUMEN

Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species.


Asunto(s)
Lactobacillus/genética , Filogenia , Biotecnología , Genoma Bacteriano , Lactobacillus/enzimología , Leuconostoc/genética , Pediococcus/genética , Análisis de Secuencia de ADN
7.
Analyst ; 139(21): 5335-8, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25137405

RESUMEN

The specific binding of streptavidin to biotinylated protein A was demonstrated using a microwave detection system. In control experiments, the degree of non-specific binding was negligible. The method of detection was used to monitor the adsorption of two other proteins, cytochrome c and glucose oxidase, on to the IDE microwave sensor surface. The response of the sensor was also examined on different substrate materials, with detection of protein binding observed obtained on both smooth, conductive (gold) and on rough, insulating (hydroxyapatite) surfaces.


Asunto(s)
Microondas , Proteína Estafilocócica A/química , Estreptavidina/química , Microscopía Electrónica de Rastreo , Unión Proteica
8.
Ir Vet J ; 66(1): 10, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23731628

RESUMEN

BACKGROUND: Streptococcus equi ssp. equi is the causative agent of 'Strangles' in horses. This is a debilitating condition leading to economic loss, yard closures and cancellation of equestrian events. There are multiple genotypes of S. equi ssp. equi which can cause disease, but to date there has been no systematic study of strains which are prevalent in Ireland. This study identified and classified Streptococcus equi ssp. equi strains isolated from within the Irish equine industry. RESULTS: Two hundred veterinary isolates were subjected to SLST (single locus sequence typing) based on an internal sequence from the seM gene of Streptococcus equi ssp equi. Of the 171 samples which successfully gave an amplicon, 162 samples (137 Irish and 24 UK strains) gave robust DNA sequence information. Analysis of the sequences allowed division of the isolates into 19 groups, 13 of which contain at least 2 isolates and 6 groups containing single isolates. There were 19 positions where a DNA SNP (single nucleotide polymorphism) occurs, and one 3 bp insertion. All groups had multiple (2-8) SNPs. Of the SNPs 17 would result in an amino acid change in the encoded protein. Interestingly, the single isolate EI8, which has 6 SNPs, has the three base pair insertion which is not seen in any other isolate, this would result in the insertion of an Ile residue at position 62 in that protein sequence. Comparison of the relevant region in the determined sequences with the UK Streptococcus equi seM MLST database showed that Group B (15 isolates) and Group I (2 isolates), as well as the individual isolates EI3 and EI8, are unique to Ireland, and some groups are most likely of UK origin (Groups F and M), but many more probably passed back and forth between the two countries. CONCLUSIONS: The strains occurring in Ireland are not clonal and there is a considerable degree of sequence variation seen in the seM gene. There are two major clades causing infection in Ireland and these strains are also common in the UK.

9.
BMC Microbiol ; 12: 190, 2012 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-22943521

RESUMEN

BACKGROUND: Bacteroides fragilis and Bacteroides thetaiotaomicron are members of the normal human intestinal microbiota. However, both organisms are capable of causing opportunistic infections, during which the environmental conditions to which the bacteria are exposed change dramatically. To further explore their potential for contributing to infection, we have characterized the expression in B. thetaiotaomicron of four homologues of the gene encoding the C10 cysteine protease SpeB, a potent extracellular virulence factor produced by Streptococcus pyogenes. RESULTS: We identified a paralogous set of genes (btp genes) in the B. thetaiotaomicron genome, that were related to C10 protease genes we recently identified in B. fragilis. Similar to C10 proteases found in B. fragilis, three of the B. thetaiotaomicron homologues were transcriptionally coupled to genes encoding small proteins that are similar in structural architecture to Staphostatins, protease inhibitors associated with Staphopains in Staphylococcus aureus. The expression of genes for these C10 proteases in both B. fragilis and B. thetaiotaomicron was found to be regulated by environmental stimuli, in particular by exposure to oxygen, which may be important for their contribution to the development of opportunistic infections. CONCLUSIONS: Genes encoding C10 proteases are increasingly identified in operons which also contain genes encoding proteins homologous to protease inhibitors. The Bacteroides C10 protease gene expression levels are responsive to different environmental stimuli suggesting they may have distinct roles in the bacterial-host interaction.


Asunto(s)
Bacteroides/enzimología , Cisteína Endopeptidasas/biosíntesis , Perfilación de la Expresión Génica , Bacteroides/efectos de los fármacos , Oxígeno/metabolismo , Factores de Virulencia/biosíntesis
10.
Mol Microbiol ; 85(5): 862-77, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22724453

RESUMEN

The marketplace for probiotic foods is burgeoning, measured in billions of euro per annum. It is imperative, however, that all bacterial strains are fully assessed for human safety. The ability to bind fibrinogen is considered a potential pathogenicity trait that can lead to platelet aggregation, serious medical complications, and in some instances, death. Here we examined strains from species frequently used as probiotics for their ability to bind human fibrinogen. Only one strain (CCUG 47825), a Lactobacillus salivarius isolate from a case of septicaemia, was found to strongly adhere to fibrinogen. Furthermore, this strain was found to aggregate human platelets at a level comparable to the human pathogen Staphylococcus aureus. By sequencing the genome of CCUG 47825, we were able to identify candidate genes responsible for fibrinogen binding. Complementing the genetic analysis with traditional molecular microbiological techniques enabled the identification of the novel fibrinogen receptor, CCUG_2371. Although only strain CCUG 47825 bound fibrinogen under laboratory conditions, homologues of the novel fibrinogen binding gene CCUG_2371 are widespread among L. salivarius strains, maintaining their potential to bind fibrinogen if expressed. We highlight the fact that without a full genetic analysis of strains for human consumption, potential pathogenicity traits may go undetected.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fibrinógeno/metabolismo , Lactobacillus/metabolismo , Adhesinas Bacterianas , Proteínas Bacterianas/genética , Fibronectinas/metabolismo , Genoma Bacteriano/genética , Humanos , Lactobacillus/genética , Agregación Plaquetaria/fisiología , Probióticos/efectos adversos , Probióticos/metabolismo , Unión Proteica
11.
Microbiology (Reading) ; 157(Pt 7): 2094-2105, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21527472

RESUMEN

Many bacterial pathogens interfere with the contact system (kallikrein-kinin system) in human plasma. Activation of this system has two consequences: cleavage of high-molecular-mass kininogen (HK) resulting in release of the potent proinflammatory peptide bradykinin, and initiation of the intrinsic pathway of coagulation. In this study, two species of the Gram-negative anaerobic commensal organism Bacteroides, namely Bacteroides fragilis and Bacteroides thetaiotaomicron, were found to bind HK and fibrinogen, the major clotting protein, from human plasma as shown by immunoelectron microscopy and Western blot analysis. In addition, these Bacteroides species were capable of activating the contact system at its surface leading to a significant prolongation of the intrinsic coagulation time and also to the release of bradykinin. Members of the genus Bacteroides have been known to act as opportunistic pathogens outside the gut, with B. fragilis being the most common isolate from clinical infections, such as intra-abdominal abscesses and bacteraemia. The present results thus provide more insight into how Bacteroides species cause infection.


Asunto(s)
Bacteroides fragilis/metabolismo , Bacteroides/metabolismo , Bradiquinina/metabolismo , Fibrinógeno/metabolismo , Sistema Calicreína-Quinina/fisiología , Quininógenos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Bacteroides/patogenicidad , Bacteroides fragilis/patogenicidad , Coagulación Sanguínea , Humanos , Calicreínas/metabolismo , Cininas/metabolismo
12.
Bacteriophage ; 1(4): 198-206, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23050213

RESUMEN

The aim of this study was to use comparative modeling to predict the three-dimensional structure of the CHAP(K) protein (cysteine, histidine-dependent amidohydrolase/peptidase domain of the LysK endolysin, derived from bacteriophage K). Iterative PSI-BLAST searches against the Protein Data Bank (PDB) and nonredundant (nr) databases were used to populate a multiple alignment for analysis using the T-Coffee Expresso server. A consensus Maximum Parsimony phylogenetic tree with a bootstrap analysis setting of 1,000 replicates was constructed using MEGA4. Structural templates relevant to our target (CHAP(K)) were identified, processed in Expresso and used to generate a 3D model in the alignment mode of SWISS-MODEL. These templates were also processed in the I-TASSER web server. A Staphylococcus saprophyticus CHAP domain protein, 2K3A, was identified as the structural template in both servers. The I-TASSER server generated the CHAP(K) model with the best bond geometries when analyzed using PROCHECK and the most logical organization of the structure. The predicted 3D model indicates that CHAP(K) has a papain-like fold. Circular dichroism spectropolarimetry also indicated that CHAP(K) has an αß fold, which is consistent with the model presented. The putative active site maintained a highly conserved Cys54-His117-Glu134 charge relay and an oxyanion hole residue Asn136. The residue triplet, Cys-His-Glu, is known to be a viable proteolytic triad in which we predict the Cys residue is used in a nucleophilic attack on peptide bonds at a specific site in the pentaglycine cross bridge of staphylococcal cell wall peptidoglycan. Use of comparative modeling has allowed approximation of the 3D structure of CHAP(K) giving information on the structure and an insight into the binding and active site of the catalytic domain. This may facilitate its development as an alternative antibacterial agent.

13.
BMC Microbiol ; 10: 122, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20416045

RESUMEN

BACKGROUND: The C10 family of cysteine proteases includes enzymes that contribute to the virulence of bacterial pathogens, such as SpeB in Streptococcus pyogenes. The presence of homologues of cysteine protease genes in human commensal organisms has not been examined. Bacteroides fragilis is a member of the dominant Bacteroidetes phylum of the human intestinal microbiota, and is a significant opportunistic pathogen. RESULTS: Four homologues of the streptococcal virulence factor SpeB were identified in the B. fragilis genome. These four protease genes, two were directly contiguous to open reading frames predicted to encode staphostatin-like inhibitors, with which the protease genes were co-transcribed. Two of these protease genes are unique to B. fragilis 638R and are associated with two large genomic insertions. Gene annotation indicated that one of these insertions was a conjugative Tn-like element and the other was a prophage-like element, which was shown to be capable of excision. Homologues of the B. fragilis C10 protease genes were present in a panel of clinical isolates, and in DNA extracted from normal human faecal microbiota. CONCLUSIONS: This study suggests a mechanism for the evolution and dissemination of an important class of protease in major members of the normal human microbiota.


Asunto(s)
Bacteroides fragilis/enzimología , Bacteroides fragilis/genética , Proteasas de Cisteína/genética , Transferencia de Gen Horizontal , Genes Bacterianos , Secuencias Repetitivas Esparcidas , Biología Computacional , ADN Bacteriano/genética , Evolución Molecular , Humanos , Profagos/genética , Homología de Secuencia de Aminoácido , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/genética
15.
J Bacteriol ; 191(18): 5743-57, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19592587

RESUMEN

Commensal lactobacilli frequently produce bile salt hydrolase (Bsh) enzymes whose roles in intestinal survival are unclear. Twenty-six Lactobacillus salivarius strains from different sources all harbored a bsh1 allele on their respective megaplasmids. This allele was related to the plasmid-borne bsh1 gene of the probiotic strain UCC118. A second locus (bsh2) was found in the chromosomes of two strains that had higher bile resistance levels. Four Bsh1-encoding allele groups were identified, defined by truncations or deletions involving a conserved residue. In vitro analyses showed that this allelic variation was correlated with widely varying bile deconjugation phenotypes. Despite very low activity of the UCC118 Bsh1 enzyme, a mutant lacking this protein had significantly lower bile resistance, both in vitro and during intestinal transit in mice. However, the overall bile resistance phenotype of this and other strains was independent of the bsh1 allele type. Analysis of the L. salivarius transcriptome upon exposure to bile and cholate identified a multiplicity of stress response proteins and putative efflux proteins that appear to broadly compensate for, or mask, the effects of allelic variation of bsh genes. Bsh enzymes with different bile-degrading kinetics, though apparently not the primary determinants of bile resistance in L. salivarius, may have additional biological importance because of varying effects upon bile as a signaling molecule in the host.


Asunto(s)
Alelos , Amidohidrolasas/genética , Ácidos y Sales Biliares/farmacología , Farmacorresistencia Bacteriana , Variación Genética , Lactobacillus/enzimología , Amidohidrolasas/metabolismo , Animales , Proteínas Bacterianas , Ácidos y Sales Biliares/metabolismo , Humanos , Intestinos/microbiología , Lactobacillus/efectos de los fármacos , Lactobacillus/genética , Lactobacillus/crecimiento & desarrollo , Ratones , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia
16.
J Mol Biol ; 386(3): 754-72, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19152799

RESUMEN

The crystal structure of an active form of ScpA has been solved to 1.9 A resolution. ScpA is a multidomain cell-envelope subtilase from Streptococcus pyogenes that cleaves complement component C5a. The catalytic triad of ScpA is geometrically consistent with other subtilases, clearly demonstrating that the additional activation mechanism proposed for the Streptococcus agalactiae homologue (ScpB) is not required for ScpA. The ScpA structure revealed that access to the catalytic site is restricted by variable regions in the catalytic domain (vr7, vr9, and vr11) and by the presence of the inserted protease-associated (PA) domain and the second fibronectin type III domains (Fn2). Modeling of the ScpA-C5a complex indicates that the substrate binds with carboxyl-terminal residues (65-74) extended through the active site and core residues (1-64) forming exosite-type interactions with the Fn2 domain. This is reminiscent of the two-site mechanism proposed for C5a binding to its receptor. In the nonprime region of the active site, interactions with the substrate backbone are predicted to be more similar to those observed in kexins, involving a single beta-strand in the peptidase. However, in contrast to kexins, there would be diminished emphasis on side-chain interactions, with little charged character in the S3-S1 and S6-S4 subsites occupied by the side chains of residues in vr7 and vr9. Substrate binding is anticipated to be dominated by ionic interactions in two distinct regions of ScpA. On the prime side of the active site, salt bridges are predicted between P1', P2', and P7' residues, and residues in the catalytic and PA domains. Remote to the active site, a larger number of ionic interactions between residues in the C5a core and the Fn2 domain are observed in the model. Thus, both PA and Fn2 domains are expected to play significant roles in substrate recognition.


Asunto(s)
Adhesinas Bacterianas/química , Endopeptidasas/química , Adhesinas Bacterianas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Complemento C5a/química , Complemento C5a/metabolismo , Cristalografía por Rayos X , Endopeptidasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Streptococcus pyogenes/química
17.
Interdiscip Perspect Infect Dis ; 2008: 175285, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19277099

RESUMEN

Probiotics have a range of proposed health benefits for the consumer, which may include modulating the levels of beneficial elements in the microbiota. Recent investigations using molecular approaches have revealed a human intestinal microbiota comprising over 1000 phylotypes. Mechanisms whereby probiotics impact on the intestinal microbiota include competition for substrates, direct antagonism by inhibitory substances, competitive exclusion, and potentially host-mediated effects such as improved barrier function and altered immune response. We now have the microbial inventories and genetic blueprints to begin tackling intestinal microbial ecology at an unprecedented level of detail, aided by the understanding that dietary components may be utilized differentially by individual phylotypes. Controlled intervention studies in humans, utilizing latest molecular technologies, are required to consolidate evidence for bacterial species that impact on the microbiota. Mechanistic insights should be provided by metabolomics and other analytical techniques for small molecules. Rigorous characterization of interactions between the diet, microbiota, and probiotic bacteria will provide new opportunities for modulating the microbiota towards improving human health.

18.
Helicobacter ; 12(3): 200-9, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17492999

RESUMEN

BACKGROUND: The Helicobacter pylori protein HorB (encoded by HP0127) is a member of a paralogous family that includes the adhesins BabA, AlpA, AlpB, and HopZ, which contribute to adhesion to gastric epithelial cells. Of the verified H. pylori porins, the HorB sequence is most similar to that of HopE, but the function of HorB is unknown. The aim of our study was to investigate the role of HorB in H. pylori gastric epithelial cell adhesion. MATERIALS AND METHODS: We disrupted the horB gene in H. pylori and measured the adhesion to gastric epithelial cells (AGS cells). We then assessed the effect that HorB disruption had on lipopolysaccharide (LPS) O-chain production and Lewis x and Lewis y antigen expression. A HorB mutant in the mouse-adapted strain H. pylori SS1 was created by marker exchange and mouse stomach colonization was quantified. Using reverse transcription polymerase chain reaction, human gastric biopsy material from H. pylori-infected patients was then examined for expression of the horB gene. RESULTS: Disruption of the horB gene reduced H. pylori adhesion by more than twofold. Adhesion in the horB knockout strain was restored to wild-type levels by re-introduction of HorB into the chromosome. Disruption of HorB reduced production of LPS O-chains and lowered the level of expression of Lewis x and Lewis y antigens. Insertional mutagenesis of the horB gene in H. pylori SS1 reduced mouse stomach colonization threefold. Finally, expression of the horB gene was detected in human gastric biopsy material from H. pylori-infected patients. CONCLUSIONS: From these data we conclude that HorB has a role in H. pylori adhesion during infection.


Asunto(s)
Adhesinas Bacterianas/inmunología , Adhesión Bacteriana/inmunología , Células Epiteliales/microbiología , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/química , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/fisiología , Animales , Tracto Gastrointestinal/citología , Expresión Génica , Helicobacter pylori/metabolismo , Humanos , Ratones
19.
Mol Microbiol ; 57(3): 650-66, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16045611

RESUMEN

This study presents evidence for a novel protease-protease inhibitor couple, SpeB-Spi, in the human pathogen Streptococcus pyogenes. The gene for the inhibitor Spi is located directly downstream of the gene for the streptococcal cysteine protease SpeB. Spi is 37% identical and 70% similar to the sequence of the SpeB propeptide, suggesting that Spi and the SpeB propeptide might bind to SpeB in an analogous manner. Secondary structure predictions and molecular modelling suggested that Spi would adopt a structure similar to the SpeB propeptide. The spi gene was co-transcribed with speB on the 1.7 knt and 2.2 knt transcripts previously identified for speB. The Spi protein was purified by SpeB-affinity chromatography from the S. pyogenes cytoplasm. Recombinant Spi was produced and purified, and shown to bind to SpeB and to inhibit its protease activity. Although a similar genetic arrangement of protease and inhibitor is present in staphylococci, this is the first example of an inhibitor molecule that is a structural homologue of the cognate propeptide, and which is genetically linked to the protease gene. Thus, this represents a novel system whereby bacteria may control the intracellular activity of their proteases.


Asunto(s)
Proteínas Bacterianas/genética , Cisteína Endopeptidasas/genética , Exotoxinas/genética , Regulación Bacteriana de la Expresión Génica , Inhibidores de Proteasas/metabolismo , Streptococcus pyogenes/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Exotoxinas/antagonistas & inhibidores , Exotoxinas/química , Exotoxinas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Inhibidores de Proteasas/química , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA