Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell ; 187(18): 4964-4980.e21, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39059380

RESUMEN

The highly conserved and essential Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has emerged as the leading target for vaccines against the disease-causing blood stage of malaria. However, the features of the human vaccine-induced antibody response that confer highly potent inhibition of malaria parasite invasion into red blood cells are not well defined. Here, we characterize 236 human IgG monoclonal antibodies, derived from 15 donors, induced by the most advanced PfRH5 vaccine. We define the antigenic landscape of this molecule and establish that epitope specificity, antibody association rate, and intra-PfRH5 antibody interactions are key determinants of functional anti-parasitic potency. In addition, we identify a germline IgG gene combination that results in an exceptionally potent class of antibody and demonstrate its prophylactic potential to protect against P. falciparum parasite challenge in vivo. This comprehensive dataset provides a framework to guide rational design of next-generation vaccines and prophylactic antibodies to protect against blood-stage malaria.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Inmunoglobulina G , Vacunas contra la Malaria , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Humanos , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/inmunología , Anticuerpos Antiprotozoarios/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Malaria Falciparum/parasitología , Animales , Proteínas Protozoarias/inmunología , Anticuerpos Monoclonales/inmunología , Inmunoglobulina G/inmunología , Antígenos de Protozoos/inmunología , Ratones , Epítopos/inmunología , Eritrocitos/parasitología , Eritrocitos/inmunología , Femenino , Proteínas Portadoras/inmunología
2.
Cell ; 187(18): 4981-4995.e14, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39059381

RESUMEN

Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is the most advanced blood-stage malaria vaccine candidate and is being evaluated for efficacy in endemic regions, emphasizing the need to study the underlying antibody response to RH5 during natural infection, which could augment or counteract responses to vaccination. Here, we found that RH5-reactive B cells were rare, and circulating immunoglobulin G (IgG) responses to RH5 were short-lived in malaria-exposed Malian individuals, despite repeated infections over multiple years. RH5-specific monoclonal antibodies isolated from eight malaria-exposed individuals mostly targeted non-neutralizing epitopes, in contrast to antibodies isolated from five RH5-vaccinated, malaria-naive UK individuals. However, MAD8-151 and MAD8-502, isolated from two malaria-exposed Malian individuals, were among the most potent neutralizers out of 186 antibodies from both cohorts and targeted the same epitopes as the most potent vaccine-induced antibodies. These results suggest that natural malaria infection may boost RH5-vaccine-induced responses and provide a clear strategy for the development of next-generation RH5 vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Vacunas contra la Malaria , Malaria Falciparum , Plasmodium falciparum , Humanos , Anticuerpos Neutralizantes/inmunología , Plasmodium falciparum/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Malaria Falciparum/parasitología , Vacunas contra la Malaria/inmunología , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Proteínas Protozoarias/inmunología , Anticuerpos Monoclonales/inmunología , Adulto , Linfocitos B/inmunología , Epítopos/inmunología , Femenino , Malí , Proteínas Portadoras/inmunología , Masculino , Adolescente
4.
Cell Host Microbe ; 31(1): 97-111.e12, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36347257

RESUMEN

Humanity has faced three recent outbreaks of novel betacoronaviruses, emphasizing the need to develop approaches that broadly target coronaviruses. Here, we identify 55 monoclonal antibodies from COVID-19 convalescent donors that bind diverse betacoronavirus spike proteins. Most antibodies targeted an S2 epitope that included the K814 residue and were non-neutralizing. However, 11 antibodies targeting the stem helix neutralized betacoronaviruses from different lineages. Eight antibodies in this group, including the six broadest and most potent neutralizers, were encoded by IGHV1-46 and IGKV3-20. Crystal structures of three antibodies of this class at 1.5-1.75-Å resolution revealed a conserved mode of binding. COV89-22 neutralized SARS-CoV-2 variants of concern including Omicron BA.4/5 and limited disease in Syrian hamsters. Collectively, these findings identify a class of IGHV1-46/IGKV3-20 antibodies that broadly neutralize betacoronaviruses by targeting the stem helix but indicate these antibodies constitute a small fraction of the broadly reactive antibody response to betacoronaviruses after SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Anticuerpos Monoclonales , Brotes de Enfermedades , Mesocricetus , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus/genética
5.
Science ; 377(6607): 728-735, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35857439

RESUMEN

The potential for future coronavirus outbreaks highlights the need to broadly target this group of pathogens. We used an epitope-agnostic approach to identify six monoclonal antibodies that bind to spike proteins from all seven human-infecting coronaviruses. All six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site. COV44-62 and COV44-79 broadly neutralize alpha- and betacoronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants BA.2 and BA.4/5, albeit with lower potency than receptor binding domain-specific antibodies. In crystal structures of COV44-62 and COV44-79 antigen-binding fragments with the SARS-CoV-2 fusion peptide, the fusion peptide epitope adopts a helical structure and includes the arginine residue at the S2' cleavage site. COV44-79 limited disease caused by SARS-CoV-2 in a Syrian hamster model. These findings highlight the fusion peptide as a candidate epitope for next-generation coronavirus vaccine development.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , COVID-19 , Epítopos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/inmunología , Epítopos/química , Epítopos/inmunología , Humanos , Péptidos/inmunología , Conformación Proteica en Hélice alfa , Dominios Proteicos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología
6.
Microorganisms ; 10(1)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35056597

RESUMEN

Mucosal-Associated Invariant T (MAIT) cells have been shown to play protective roles during infection with diverse pathogens through their propensity for rapid innate-like cytokine production and cytotoxicity. Among the potential applications for MAIT cells is to defend against Staphylococcus aureus, a pathogen of serious clinical significance. However, it is unknown how MAIT cell responses to S. aureus are elicited, nor has it been investigated whether MAIT cell cytotoxicity is mobilized against intracellular S. aureus. In this study, we investigate the capacity of human MAIT cells to respond directly to S. aureus. MAIT cells co-cultured with dendritic cells (DCs) infected with S. aureus rapidly upregulate CD69, express IFNγ and Granzyme B and degranulate. DC secretion of IL-12, but not IL-18, was implicated in this immune response, while TCR binding of MR1 is required to commence cytokine production. MAIT cell cytotoxicity resulted in apoptosis of S. aureus-infected cells, and reduced intracellular persistence of S. aureus. These findings implicate these unconventional T cells in important, rapid anti-S. aureus responses that may be of great relevance to the ongoing development of novel anti-S. aureus treatments.

7.
J Immunol ; 205(4): 1039-1049, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32651220

RESUMEN

Murine studies have shown the potential for γδ T cells to mediate immunity to Staphylococcus aureus in multiple tissue settings by the secretion of diverse cytokines. However, the role played by γδ T cells in human immune responses to S. aureus is almost entirely unknown. In this study, we establish the capacity of human Vδ2+ γδ T cells for rapid activation in response to S. aureus In coculture with S. aureus-infected monocyte-derived dendritic cells (DCs), Vδ2+ cells derived from peripheral blood rapidly upregulate CD69 and secrete high levels of IFN-γ. DCs mediate this response through direct contact and IL-12 secretion. In turn, IFN-γ released by Vδ2+ cells upregulates IL-12 secretion by DCs in a positive feedback loop. Furthermore, coculture with γδ T cells results in heightened expression of the costimulatory molecule CD86 and the lymph node homing molecule CCR7 on S. aureus-infected DCs. In cocultures of CD4+ T cells with S. aureus-infected DCs, the addition of γδ T cells results in heightened CD4+ T cell activation. Our findings identify γδ T cells as potential key players in the early host response to S. aureus during bloodstream infection, promoting enhanced responses by both innate and adaptive immune cell populations, and support their consideration in the development of host-directed anti-S. aureus treatments.


Asunto(s)
Inmunidad Adaptativa/inmunología , Linfocitos T CD4-Positivos/inmunología , Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Antígenos CD/inmunología , Antígenos de Diferenciación de Linfocitos T/inmunología , Antígeno B7-2/inmunología , Células Cultivadas , Células Dendríticas/inmunología , Humanos , Interferón gamma/inmunología , Interleucina-12/inmunología , Lectinas Tipo C/inmunología , Monocitos/inmunología , Receptores CCR7/inmunología , Regulación hacia Arriba/inmunología
8.
Lancet Infect Dis ; 17(6): 583, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28555583

Asunto(s)
Helmintos , Animales
9.
Lancet Infect Dis ; 17(6): e166-e176, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28233632

RESUMEN

With transplantation becoming an increasingly routine form of treatment for diverse populations, and with international travel becoming ever more accessible and affordable, the danger of transplantation-mediated helminth infections, exacerbated by coincident immunosuppression, must be considered. In this Review, we attempt to catalogue all clinically-relevant helminthiases that have been reported to coincide with transplantation, whether by transplantation-mediated transmission, reactivation of latent infections in an immunosuppressed context, or possible de-novo infection during the immunosuppressed peritransplant period. Helminthiasis has been reported in cases of kidney, liver, bowel, pancreas, heart, lung, and stem-cell transplant, and blood transfusion. For each helminthiasis, known risk factors, symptoms, and suggested options for screening and treatment are given. We conclude that helminths are a small but important and potentially severe source of disease after transplantation, and, with options for diagnosis and treatment, these pathogens warrant greater consideration during organ implantation. The achievement of immunological tolerance using helminth-derived products is also an exciting future prospect.


Asunto(s)
Helmintiasis/clasificación , Helmintos/aislamiento & purificación , Terapia de Inmunosupresión , Trasplante de Órganos/efectos adversos , Animales , Transmisión de Enfermedad Infecciosa , Helmintiasis/inmunología , Helmintiasis/terapia , Humanos , Tolerancia Inmunológica , Factores de Riesgo , Viaje
10.
PLoS Negl Trop Dis ; 10(8): e0004837, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27490109

RESUMEN

The helminth Ascaris causes ascariasis in both humans and pigs. Humans, especially children, experience significant morbidity including respiratory complications, growth deficits and intestinal obstruction. Given that 800 million people worldwide are infected by Ascaris, this represents a significant global public health concern. The severity of the symptoms and associated morbidity are related to the parasite burden and not all hosts are infected equally. While the pathology of the disease has been extensively examined, our understanding of the molecular mechanisms underlying resistance and susceptibility to this nematode infection is poor. In order to investigate host differences associated with heavy and light parasite burden, an experimental murine model was developed utilising Ascaris-susceptible and -resistant mice strains, C57BL/6J and CBA/Ca, respectively, which experience differential burdens of migratory Ascaris larvae in the host lungs. Previous studies identified the liver as the site where this difference in susceptibility occurs. Using a label free quantitative proteomic approach, we analysed the hepatic proteomes of day four post infection C57BL/6J and CBA/Ca mice with and without Ascaris infection to identify proteins changes potentially linked to both resistance and susceptibility amongst the two strains, respectively. Over 3000 proteins were identified in total and clear intrinsic differences were elucidated between the two strains. These included a higher abundance of mitochondrial proteins, particularly those associated with the oxidative phosphorylation pathway and reactive oxygen species (ROS) production in the relatively resistant CBA/Ca mice. We hypothesise that the increased ROS levels associated with higher levels of mitochondrial activity results in a highly oxidative cellular environment that has a dramatic effect on the nematode's ability to successfully sustain a parasitic association with its resistant host. Under infection, both strains had increased abundances in proteins associated with the oxidative phosphorylation pathway, as well as the tricarboxylic acid cycle, with respect to their controls, indicating a general stress response to Ascaris infection. Despite the early stage of infection, some immune-associated proteins were identified to be differentially abundant, providing a novel insight into the host response to Ascaris. In general, the susceptible C57BL/6J mice displayed higher abundances in immune-associated proteins, most likely signifying a more active nematode cohort with respect to their CBA/Ca counterparts. The complement component C8a and S100 proteins, S100a8 and S100a9, were highly differentially abundant in both infected strains, signifying a potential innate immune response and the importance of the complement pathway in defence against macroparasite infection. In addition, the signatures of an early adaptive immune response were observed through the presence of proteins, such as plastin-2 and dipeptidyl peptidase 1. A marked decrease in proteins associated with translation was also observed in both C57BL/6J and CBA/Ca mice under infection, indicative of either a general response to Ascaris or a modulatory effect by the nematode itself. Our research provides novel insights into the in vivo host-Ascaris relationship on the molecular level and provides new research perspectives in the development of Ascaris control and treatment strategies.


Asunto(s)
Ascariasis/parasitología , Resistencia a la Enfermedad , Hígado/parasitología , Proteoma/metabolismo , Animales , Ascaris suum , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Larva , Hígado/metabolismo , Pulmón/parasitología , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Proteínas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...