Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39368470

RESUMEN

Identifying the processes that limit populations is a foundational objective of ecology and an urgent need for conservation. For migratory animals, researchers must study individuals throughout their annual cycles to determine how environmental conditions limit demographic rates within each period of the annual cycle and also between periods through carry-over effects and seasonal interactions.1,2,3,4,5,6 Our poor understanding of the rates and causes of avian migration mortality7 hinders the identification of limiting factors and the reversal of widespread avian population declines.8,9 Here, we implement new methods to estimate apparent survival (hereafter survival) during migration directly from automated telemetry data10 in Kirtland's Warblers (Setophaga kirtlandii) and indirectly from mark-recapture data in Black-throated Blue Warblers (S. caerulescens). Previous experimental and observational studies of our focal species and other migratory songbirds have shown strong effects of Caribbean precipitation and habitat quality on food availability,11,12,13,14 body condition,12,13,14,15,16,17,18,19 migration timing,11,12,15,16,20,21,22,23 natal dispersal,24,25 range dynamics,26 reproductive success,20,22,27 and annual survival.18,19,20,23,28,29,30,31 Building on this research, we test the hypotheses that environmental conditions during the non-breeding period affect subsequent survival during spring migration and breeding. We found that reduced precipitation and environmental productivity in the non-breeding period strongly influenced survival in both species, primarily by reducing survival during spring migration. Our results indicate that climate-driven environmental conditions can carry over to affect survival in subsequent periods and thus likely play an important role in year-round population dynamics. These lethal carry-over effects may be widespread and are likely magnified by intensifying climate change.

2.
Mov Ecol ; 11(1): 24, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37122011

RESUMEN

BACKGROUND: Each spring and fall billions of songbirds depart on nocturnal migrations across the globe. Theory suggests that songbirds should depart on migration shortly after sunset to maximize their potential for nightly flight duration or to time departure with the emergence of celestial cues needed for orientation and navigation. Although captive studies have found that songbirds depart during a narrow window of time after sunset, observational studies have found that wild birds depart later and more asynchronously relative to sunset than predicted. METHODS: We used coded radio tags and automated radio-telemetry to estimate the time that nearly 400 individuals from nine songbird species departed their breeding or wintering grounds across North America. We also assessed whether each species was most likely beginning long-distance migratory flights at departure or instead first making non-migratory regional flights. We then explored variation in nocturnal departure time by post-departure movement type, species, age, sex, and season. RESULTS: We found that 90% of individuals from species that were likely initiating long-distance migratory flights departed within 69 min of civil dusk, regardless of species, season, age, or sex. By contrast, species that likely first made non-migratory regional movements away from the migratory destination departed later and more asynchronously throughout the night. Regardless of post-departure movement type, 98% of individuals departed after civil dusk but otherwise showed no preference in relation to twilight phase. CONCLUSIONS: Although the presence of celestial orientation cues at civil dusk may set a starting point for departure each night, the fact that species likely beginning long-distance migration departed earlier and more synchronously relative to civil dusk than those first making non-migratory regional movements is consistent with the hypothesis that departing promptly after civil dusk functions to maximize the potential for nightly flight duration and distance. By studying the onset of migration, our study provides baseline information about departure decisions that may enhance our understanding of departure timing throughout migration.

3.
Mov Ecol ; 11(1): 23, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37122025

RESUMEN

BACKGROUND: Weather can have both delayed and immediate impacts on animal populations, and species have evolved behavioral adaptions to respond to weather conditions. Weather has long been hypothesized to affect the timing and intensity of avian migration, and radar studies have demonstrated strong correlations between weather and broad-scale migration patterns. How weather affects individual decisions about the initiation of migratory flights, particularly at the beginning of migration, remains uncertain. METHODS: Here, we combine automated radio telemetry data from four species of songbirds collected at five breeding and wintering sites in North America with hourly weather data from a global weather model. We use these data to determine how wind profit, atmospheric pressure, precipitation, and cloud cover affect probability of departure from breeding and wintering sites. RESULTS: We found that the probability of departure was related to changes in atmospheric pressure, almost completely regardless of species, season, or location. Individuals were more likely to depart on nights when atmospheric pressure had been rising over the past 24 h, which is predictive of fair weather over the next several days. By contrast, wind profit, precipitation, and cloud cover were each only informative predictors of departure probability in a single species. CONCLUSIONS: Our results suggest that individual birds actively use weather information to inform decision-making regarding the initiation of departure from the breeding and wintering grounds. We propose that birds likely choose which date to depart on migration in a hierarchical fashion with weather not influencing decision-making until after the departure window has already been narrowed down by other ultimate and proximate factors.

4.
Mol Ecol ; 30(22): 5900-5916, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34580952

RESUMEN

Migratory animals experiencing substantial change in diet and habitat across the annual cycle may have corresponding shifts in host-associated microbial diversity. Using automated telemetry and radio tags to recapture birds, we examined gut microbiota structure in the same population and often same individual of Kirtland's Warblers (Setophaga kirtlandii) initially sampled on their wintering grounds in The Bahamas and subsequently resampled within their breeding territories in Michigan, USA. Initial sampling occurred in March and April and resampling occurred in May, June and early July. The composition of the most abundant phyla and classes of the warblers' microbiota is similar to that of other migratory birds. However, we detected notable variation in abundance and diversity of numerous bacterial taxa, including a decrease in microbial richness and significant differences in microbial communities when comparing the microbiota of birds first captured in The Bahamas to that of birds recaptured in Michigan. This is observed at the individual and population level. Furthermore, we found that 22 bacterial genera exhibit heightened abundance within specific sampling periods and are probably associated with diet and environmental change. Finally, we described a small, species-specific shared microbial profile that spans multiple time periods and environments within the migratory cycle. Our research highlights that the avian gut microbiota is dynamic over time, most significantly impacted by changing environments associated with migration. These results support the need for full annual cycle monitoring of migratory bird microbiota to improve understanding of seasonal host movement ecologies and response to recurrent physiological stressors.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Pájaros Cantores , Migración Animal , Animales , Microbioma Gastrointestinal/genética , Humanos , Microbiota/genética , Estaciones del Año
5.
Sci Rep ; 10(1): 20658, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33244082

RESUMEN

Understanding how migratory animals respond to spatial and temporal variation in habitat phenology is critical for identifying selection pressures and tradeoffs at different life history stages. We examined the influence of breeding habitat phenology on life history timing of the eastern willet (Tringa semipalmata semipalmata) across a latitudinal gradient of breeding sites on the east coast of North America. To describe migration and life history timing, we deployed light-level geolocators on willets at breeding sites in New Jersey, Massachusetts and Maine, USA and evaluated additional data on life history timing and migratory connectivity from previous studies, eBird and band recoveries. Willets from Nova Scotia to Georgia winter exclusively on the Atlantic coast of northern South America and share common stopover sites. The timing of wintering site departure, breeding site arrival, nesting and southbound departure was later for birds breeding at higher latitudes while the duration of all life phases was similar across sites. Regardless of latitude, nesting corresponded with a consistent stage of seasonal salt marsh biomass accumulation and with peak spring temperature acceleration (GDD jerk). Temperature acceleration and salt marsh biomass were closely correlated with each other across the 11° latitudinal gradient we examined and with the timing of nest initiation across the northern 6° of this gradient. For this northern 6° of latitude, these results suggest that the timing of migration and breeding events in the annual cycle of eastern willets is constrained by a phenological "green wave" of spring salt marsh productivity at breeding sites.


Asunto(s)
Migración Animal/fisiología , Aves/fisiología , Animales , Cruzamiento/métodos , Ecosistema , Georgia , Maine , Massachusetts , New Jersey , América del Norte , Estaciones del Año , Temperatura
6.
Curr Biol ; 30(20): 4112, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33080188
7.
Curr Biol ; 30(20): 4056-4062.e3, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32822609

RESUMEN

Technology has revolutionized our ability to track animals across the globe, significantly advancing our understanding of animal movement [1, 2]. Technological and logistical challenges, however, have led to non-migratory movements that fall outside of the territory/home range paradigm, receiving less attention. This may have resulted in a widespread underestimation of the frequency and spatial scale at which animals either move outside of their territories and home ranges or adopt altogether different space-use strategies. We used a breeding-range-wide automated radio-telemetry system to track movements in a migratory songbird, the Kirtland's warbler (Setophaga kirtlandii). By attaching radio tags on the wintering grounds and relocating the same individuals on the breeding grounds, we were able to sample the population without regard to their eventual breeding status or space-use strategy. We found that a surprising proportion of breeders and most non-breeders made long-distance (5-77 km) movements during the breeding season while conspecifics remained within their small territories. Movement frequency peaked during the nestling and fledgling periods, indicating that both breeders and non-breeders were likely prospecting to inform dispersal. A literature review revealed that Kirtland's warblers moved farther than most species in absolute distances and farther than all other species relative to normal daily movements. We argue that similarly long-distance movements likely exist in many other species but have gone undetected because of technological limitations, research biases, and logistical challenges. Underestimation of the scale of these poorly understood life history behaviors has important implications for the ecology, evolution, and conservation of animals. VIDEO ABSTRACT.


Asunto(s)
Migración Animal/fisiología , Pájaros Cantores/fisiología , Animales , Geografía , Estaciones del Año , Telemetría/métodos
8.
J Anim Ecol ; 89(1): 207-220, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30771254

RESUMEN

Currently, the deployment of tracking devices is one of the most frequently used approaches to study movement ecology of birds. Recent miniaturization of light-level geolocators enabled studying small bird species whose migratory patterns were widely unknown. However, geolocators may reduce vital rates in tagged birds and may bias obtained movement data. There is a need for a thorough assessment of the potential tag effects on small birds, as previous meta-analyses did not evaluate unpublished data and impact of multiple life-history traits, focused mainly on large species and the number of published studies tagging small birds has increased substantially. We quantitatively reviewed 549 records extracted from 74 published and 48 unpublished studies on over 7,800 tagged and 17,800 control individuals to examine the effects of geolocator tagging on small bird species (body mass <100 g). We calculated the effect of tagging on apparent survival, condition, phenology and breeding performance and identified the most important predictors of the magnitude of effect sizes. Even though the effects were not statistically significant in phylogenetically controlled models, we found a weak negative impact of geolocators on apparent survival. The negative effect on apparent survival was stronger with increasing relative load of the device and with geolocators attached using elastic harnesses. Moreover, tagging effects were stronger in smaller species. In conclusion, we found a weak effect on apparent survival of tagged birds and managed to pinpoint key aspects and drivers of tagging effects. We provide recommendations for establishing matched control group for proper effect size assessment in future studies and outline various aspects of tagging that need further investigation. Finally, our results encourage further use of geolocators on small bird species but the ethical aspects and scientific benefits should always be considered.


Asunto(s)
Migración Animal , Aves , Animales , Filogenia , Sesgo de Publicación , Estaciones del Año
9.
Gen Comp Endocrinol ; 228: 24-32, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26808965

RESUMEN

The steroid hormone testosterone (T) influences a multitude of traits critical to reproduction in vertebrates. In birds, high male T supports territory establishment and mate attraction, but is thought to interfere with parental care. Interspecific comparisons indicate that migratory species with short, synchronous breeding seasons have the highest peak T, and that the seasonal profile of T exhibits a rapid decline with the onset of incubation by females. We describe the T profile of the migratory, socially monogamous, and biparental Eastern Kingbird (Tyrannus tyrannus) from the high desert of eastern Oregon, USA, where breeding occurs within a short 2-3 month period. Eastern Kingbirds are socially monogamous but exhibit high rates of extra-pair paternity as ∼60% of broods contain extra-pair young. We therefore evaluate whether Eastern Kingbirds exhibit the "typical" T profile expected for a synchronously breeding migratory species, or whether T is maintained at a more constant level as would be predicted for a species with opportunities for mating that extend over a majority of the breeding season. Our samples were divided into six periods of the reproductive cycle from territory establishment to the feeding of fledglings. T did not change across stages of the nest cycle. Instead, T declined with sampling date and nest density, and increased with the number of fertile females in the population. Male kingbirds advertise their presence through song for most of the breeding season, and we suggest that T is maintained throughout most of the breeding season because male fitness is equally dependent on within- and extra-pair reproductive success.


Asunto(s)
Migración Animal/fisiología , Cruzamiento , Passeriformes/fisiología , Reproducción/fisiología , Conducta Sexual Animal/fisiología , Testosterona/metabolismo , Animales , Femenino , Masculino , Estaciones del Año
10.
Ecology ; 96(7): 1933-42, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26378315

RESUMEN

Many tropical habitats experience pronounced dry seasons, during which arthropod food availability declines, potentially limiting resident and migratory animal populations. In response to declines in food, individuals may attempt to alter their space use to enhance access to food resources, but may be socially constrained from doing so by con- and heterospecifics. If social constraints exist, food declines should result in decreased body condition. In migratory birds, correlational evidence suggests a link between body condition and migration timing. Poor body condition and delayed migration may, in turn, impact fitness in subsequent seasons via carry-over effects. To determine if winter food availability affects space use, inter- and intraspecific competition, body composition (i.e., mass, fat, and pectoral muscle), and migration timing, we experimentally decreased food availability on individual American Redstart (Setophaga ruticilla) territories in high-quality mangrove habitat. Redstarts on control territories experienced -40% loss of food due to the seasonal nature of the environment. Redstarts on experimental territories experienced -80% declines in food, which closely mimicked natural declines in nearby, low-quality, scrub habitat. Individuals on food-reduced territories did not expand their territories locally, but instead either became non-territorial "floaters" or remained on territory. Regardless of territorial status, food-reduced American Redstarts all deposited fat compared to control birds. Fat deposits provide insurance against the risk of starvation, but, for American Redstarts, came at the expense of maintaining pectoral muscle. Subsequently, food-reduced American Redstarts experienced, on average, a one-week delay in departure on spring migration, likely due to the loss of pectoral muscle. Thus, our results demonstrate experimentally, for the first time, that declines in winter food availability can result in a fat-muscle trade-off, which, in turn, delays departure on spring migration. Previous work has demonstrated that, for each day delayed after the first male arrival on the breeding grounds, American Redstarts experience an 11% decrease in the chance of successfully reproducing. Therefore, such delays in departure likely lead to fitness costs for migratory birds. Because tropical seasonal forests are expected to become drier in response to global climate change, Neotropical migratory bird populations may experience significant winter food limitation, further exacerbating population declines in the coming decades.


Asunto(s)
Migración Animal/fisiología , Composición Corporal/fisiología , Abastecimiento de Alimentos , Passeriformes/fisiología , Estaciones del Año , Animales , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...