Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(28): 11163-11171, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38953530

RESUMEN

Glycans on proteins and lipids play important roles in maturation and cellular interactions, contributing to a variety of biological processes. Aberrant glycosylation has been associated with various human diseases including cancer; however, elucidating the distribution and heterogeneity of glycans in complex tissue samples remains a major challenge. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is routinely used to analyze the spatial distribution of a variety of molecules including N-glycans directly from tissue surfaces. Sialic acids are nine carbon acidic sugars that often exist as the terminal sugars of glycans and are inherently difficult to analyze using MALDI-MSI due to their instability prone to in- and postsource decay. Here, we report on a rapid and robust method for stabilizing sialic acid on N-glycans in FFPE tissue sections. The established method derivatizes and identifies the spatial distribution of α2,3- and α2,6-linked sialic acids through complete methylamidation using methylamine and PyAOP ((7-azabenzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate). Our in situ approach increases the glycans detected and enhances the coverage of sialylated species. Using this streamlined, sensitive, and robust workflow, we rapidly characterize and spatially localize N-glycans in human tumor tissue sections. Additionally, we demonstrate this method's applicability in imaging mammalian cell suspensions directly on slides, achieving cellular resolution with minimal sample processing and cell numbers. This workflow reveals the cellular locations of distinct N-glycan species, shedding light on the biological and clinical significance of these biomolecules in human diseases.


Asunto(s)
Glicómica , Polisacáridos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Humanos , Glicómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Polisacáridos/análisis , Polisacáridos/química
2.
Nanoscale Adv ; 4(24): 5355-5364, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36540112

RESUMEN

Interactions between sialic acid (Sia) and sialic acid-binding immunoglobulin-like lectins (siglecs) regulate the immune system, with aberrations contributing to pathologies such as autoimmunity, infectious disease and cancer. Over the last decade, several multivalent Sia ligands have been synthesized to modulate the Sia-binding affinity of proteins/lectins. Here, we report a novel class of multivalent siglec probes through the decoration of α(2,6)-sialyllactose ligands on inherently fluorescent carbon dots (CD). We show that the preference of α(2,3)-linked Sia for siglec-1 can be altered by increasing the multivalence of Sia ligands present on the CD, and that a locally high glycan concentration can have a direct effect on linkage specificity. Additionally, micromolar (IC50 ∼ 70 µM) interaction of α(2,6)-sialyllactose-CD (6-CD) with siglec-2 (CD22) revealed it was capable of generating a significant cytotoxic effect on Burkitt's Lymphoma (BL) Daudi B cells. This phenonomen was attributed to 6-CD's ability to form trans interactions with CD22 on masked BL Daudi cells as a direct result of clustering of the Sia moiety on the CD surface. Overall, our glycoengineered carbon dots represent a novel high affinity molecular probe with multiple applications in sialoglycoscience and medicine.

3.
Proc Natl Acad Sci U S A ; 119(27): e2116197119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35767643

RESUMEN

The majority of viruses within the gut are obligate bacterial viruses known as bacteriophages (phages). Their bacteriotropism underscores the study of phage ecology in the gut, where they modulate and coevolve with gut bacterial communities. Traditionally, these ecological and evolutionary questions were investigated empirically via in vitro experimental evolution and, more recently, in vivo models were adopted to account for physiologically relevant conditions of the gut. Here, we probed beyond conventional phage-bacteria coevolution to investigate potential tripartite evolutionary interactions between phages, their bacterial hosts, and the mammalian gut mucosa. To capture the role of the mammalian gut, we recapitulated a life-like gut mucosal layer using in vitro lab-on-a-chip devices (to wit, the gut-on-a-chip) and showed that the mucosal environment supports stable phage-bacteria coexistence. Next, we experimentally coevolved lytic phage populations within the gut-on-a-chip devices alongside their bacterial hosts. We found that while phages adapt to the mucosal environment via de novo mutations, genetic recombination was the key evolutionary force in driving mutational fitness. A single mutation in the phage capsid protein Hoc-known to facilitate phage adherence to mucus-caused altered phage binding to fucosylated mucin glycans. We demonstrated that the altered glycan-binding phenotype provided the evolved mutant phage a competitive fitness advantage over its ancestral wild-type phage in the gut-on-a-chip mucosal environment. Collectively, our findings revealed that phages-in addition to their evolutionary relationship with bacteria-are able to evolve in response to a mammalian-derived mucosal environment.


Asunto(s)
Bacterias , Bacteriófagos , Tracto Gastrointestinal , Membrana Mucosa , Animales , Bacterias/virología , Bacteriófagos/genética , Bacteriófagos/fisiología , Proteínas de la Cápside/genética , Tracto Gastrointestinal/virología , Membrana Mucosa/virología , Moco , Mutación , Simbiosis
4.
Biosens Bioelectron ; 205: 114088, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35219947

RESUMEN

Recent advances in micro-electromechanical systems (MEMS) has allowed unprecedent perspectives for label-free detection (LFD) of biological and chemical analytes. Additionally, these LFD technologies offer the potential to design high resolution and high throughput sensing platforms, with the promise of further miniaturization. However, the immobilization of biomolecules onto inorganic surfaces without impacting their sensing abilities is crucial for designing these LFD technologies. Currently, covalent functionalization of self-assembled monolayers (SAMs) present promising pathways for improving assay sensitivity, reproducibility, surface stability and proximity of binding sites to the sensor surface. Herein, we investigate the use of chemical vapor deposition of 3-(glycidyloxypropyl)-trimethoxysilane (GOPTS) as a versatile SAM for the covalent functionalization of a SiO2 microcantilever array (MCA) for carbohydrate-lectin interactions with picogram sensitivity. Additionally, we demonstrate glycan immobilization to MCA is feasible using traditional piezoelectric microarray printer technology. Given the complexity of the glycome, the ability to spot samples in a high-throughput manner establishes our MCA as robust, label-free, and scalable means to analyze carbohydrate-protein interactions These findings demonstrate that GOPTS SAMs provide a suitable biofunctionalization route for MEMS and provides the proof of principle that can be extended to various LFD technologies toward a truly high-throughput and high-resolution platform.


Asunto(s)
Técnicas Biosensibles , Lectinas , Carbohidratos/química , Reproducibilidad de los Resultados , Dióxido de Silicio
5.
Langmuir ; 36(44): 13181-13192, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33104368

RESUMEN

Currently available bioplatforms such as microarrays and surface plasmon resonators are unable to combine high-throughput multiplexing with label-free detection. As such, emerging microelectromechanical systems (MEMS) and microplasmonics platforms offer the potential for high-resolution, high-throughput label-free sensing of biological and chemical analytes. Therefore, the search for materials capable of combining multiplexing and label-free quantitation is of great significance. Recently, interest in silicon carbide (SiC) as a suitable material in numerous biomedical applications has increased due to its well-explored chemical inertness, mechanical strength, bio- and hemocompatibility, and the presence of carbon that enables the transfer-free growth of graphene. SiC is also multifunctional as both a wide-band-gap semiconductor and an efficient low-loss plasmonics material and thus is ideal for augmenting current biotransducers in biosensors. Additionally, the cubic variant, 3C-SiC, is an extremely promising material for MEMS, being a suitable platform for the easy micromachining of microcantilevers, and as such capable of realizing the potential of real time miniaturized multiplexed assays. The generation of an appropriately functionalized and versatile organic monolayer suitable for the immobilization of biomolecules is therefore critical to explore label-free, multiplexed quantitation of biological interactions on SiC. Herein, we address the use of various silane self-assembled monolayers (SAMs) for the covalent functionalization of monocrystalline 3C-SiC films as a novel platform for the generation of functionalized microarray surfaces using high-throughput glycan arrays as the model system. We also demonstrate the ability to robotically print high throughput arrays on free-standing SiC microstructures. The implementation of a SiC-based label-free glycan array will provide a proof of principle that could be extended to the immobilization of other biomolecules in a similar SiC-based array format, thus making potentially significant advances to the way biological interactions are studied.

6.
Sci Rep ; 8(1): 13139, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30177739

RESUMEN

The interaction of carbohydrate-binding proteins (CBPs) with their corresponding glycan ligands is challenging to study both experimentally and computationally. This is in part due to their low binding affinity, high flexibility, and the lack of a linear sequence in carbohydrates, as exists in nucleic acids and proteins. We recently described a function-prediction technique called SPOT-Struc that identifies CBPs by global structural alignment and binding-affinity prediction. Here we experimentally determined the carbohydrate specificity and binding affinity of YesU (RCSB PDB ID: 1oq1), an uncharacterized protein from Bacillus subtilis that SPOT-Struc predicted would bind high mannose-type glycans. Glycan array analyses however revealed glycan binding patterns similar to those exhibited by fucose (Fuc)-binding lectins, with SPR analysis revealing high affinity binding to Lewisx and lacto-N-fucopentaose III. Structure based alignment of YesU revealed high similarity to the legume lectins UEA-I and GS-IV, and docking of Lewisx into YesU revealed a complex structure model with predicted binding affinity of -4.3 kcal/mol. Moreover the adherence of B. subtilis to intestinal cells was significantly inhibited by Lex and Ley but by not non-fucosylated glycans, suggesting the interaction of YesU to fucosylated glycans may be involved in the adhesion of B. subtilis to the gastrointestinal tract of mammals.


Asunto(s)
Amino Azúcares/química , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Fucosa/química , Oligosacáridos/química , Polisacáridos/química , Receptores de Superficie Celular/química , Amino Azúcares/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Adhesión Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Células CACO-2 , Secuencia de Carbohidratos , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Fucosa/metabolismo , Expresión Génica , Glicosilación , Humanos , Cinética , Antígenos del Grupo Sanguíneo de Lewis , Simulación del Acoplamiento Molecular , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...