Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Sci Adv ; 10(23): eadj4735, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38838150

RESUMEN

Why individuals with Down syndrome (DS) are more susceptible to SARS-CoV-2-induced neuropathology remains elusive. Choroid plexus (ChP) plays critical roles in barrier function and immune response modulation and expresses the ACE2 receptor and the chromosome 21-encoded TMPRSS2 protease, suggesting its substantial role in establishing SARS-CoV-2 infection in the brain. To explore this, we established brain organoids from DS and isogenic euploid iPSC that consist of a core of functional cortical neurons surrounded by a functional ChP-like epithelium (ChPCOs). DS-ChPCOs recapitulated abnormal DS cortical development and revealed defects in ciliogenesis and epithelial cell polarity in ChP-like epithelium. We then demonstrated that the ChP-like epithelium facilitates infection and replication of SARS-CoV-2 in cortical neurons and that this is increased in DS. Inhibiting TMPRSS2 and furin activity reduced viral replication in DS-ChPCOs to euploid levels. This model enables dissection of the role of ChP in neurotropic virus infection and euploid forebrain development and permits screening of therapeutics for SARS-CoV-2-induced neuropathogenesis.


Asunto(s)
Encéfalo , COVID-19 , Plexo Coroideo , Síndrome de Down , Organoides , SARS-CoV-2 , Serina Endopeptidasas , Plexo Coroideo/virología , Plexo Coroideo/metabolismo , Plexo Coroideo/patología , Organoides/virología , Organoides/metabolismo , Organoides/patología , Humanos , SARS-CoV-2/fisiología , COVID-19/virología , COVID-19/patología , COVID-19/metabolismo , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , Síndrome de Down/metabolismo , Síndrome de Down/patología , Síndrome de Down/genética , Encéfalo/virología , Encéfalo/patología , Encéfalo/metabolismo , Neuronas/metabolismo , Neuronas/virología , Neuronas/patología , Replicación Viral , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/virología , Furina/metabolismo , Furina/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Tropismo Viral
2.
Biomater Res ; 28: 0025, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774128

RESUMEN

Human cell reprogramming traditionally involves time-intensive, multistage, costly tissue culture polystyrene-based cell culture practices that ultimately produce low numbers of reprogrammed cells of variable quality. Previous studies have shown that very soft 2- and 3-dimensional hydrogel substrates/matrices (of stiffnesses ≤ 1 kPa) can drive ~2× improvements in human cell reprogramming outcomes. Unfortunately, these similarly complex multistage protocols lack intrinsic scalability, and, furthermore, the associated underlying molecular mechanisms remain to be fully elucidated, limiting the potential to further maximize reprogramming outcomes. In screening the largest range of polyacrylamide (pAAm) hydrogels of varying stiffness to date (1 kPa to 1.3 MPa), we have found that a medium stiffness gel (~100 kPa) increased the overall number of reprogrammed cells by up to 10-fold (10×), accelerated reprogramming kinetics, improved both early and late phases of reprogramming, and produced induced pluripotent stem cells (iPSCs) having more naïve characteristics and lower remnant transgene expression, compared to the gold standard tissue culture polystyrene practice. Functionalization of these pAAm hydrogels with poly-l-dopamine enabled, for the first-time, continuous, single-step reprogramming of fibroblasts to iPSCs on hydrogel substrates (noting that even the tissue culture polystyrene practice is a 2-stage process). Comparative RNA sequencing analyses coupled with experimental validation revealed that a novel reprogramming regulator, protein phosphatase and actin regulator 3, up-regulated under the gel condition at a very early time point, was responsible for the observed enhanced reprogramming outcomes. This study provides a novel culture protocol and substrate for continuous hydrogel-based cell reprogramming and previously unattained clarity of the underlying mechanisms via which substrate stiffness modulates reprogramming kinetics and iPSC quality outcomes.

3.
Lab Chip ; 24(3): 537-548, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38168806

RESUMEN

The human body is made up of approximately 40 trillion cells in close contact, with the cellular density of individual tissues varying from 1 million to 1 billion cells per cubic centimetre. Interactions between different cell types (termed heterotypic) are thus common in vivo. Communication between cells can take the form of direct cell-cell contact mediated by plasma membrane proteins or through paracrine signalling mediated through the release, diffusion, and receipt of soluble factors. There is currently no systematic method to investigate the relative contributions of these mechanisms to cell behaviour. In this paper, we detail the conception, development and validation of a microfluidic device that allows cell-cell contact and paracrine signalling in defined areas and over a variety of biologically relevant length scales, referred to as the interactome-device or 'I-device'. Importantly, by intrinsic device design features, cells in different regions in the device are exposed to four different interaction types, including a) no heterotypic cell interaction, b) only paracrine signalling, c) only cell-cell direct contact, or d) both forms of interaction (paracrine and cell-cell direct contact) together. The device design was validated by both mathematical modelling and experiments. Perfused stem cell culture over the medium term and the formation of direct contact between cells in the culture chambers was confirmed. The I-device offers significant flexibility, being able to be applied to any combination of adherent cells to determine the relative contributions of different communication mechanisms to cellular outcomes.


Asunto(s)
Comunicación Celular , Técnicas de Cultivo de Célula , Humanos , Técnicas de Cocultivo , Comunicación Paracrina , Dispositivos Laboratorio en un Chip
4.
Geroscience ; 46(1): 999-1015, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37314668

RESUMEN

Following prolonged cell division, mesenchymal stem cells enter replicative senescence, a state of permanent cell cycle arrest that constrains the use of this cell type in regenerative medicine applications and that in vivo substantially contributes to organismal ageing. Multiple cellular processes such as telomere dysfunction, DNA damage and oncogene activation are implicated in promoting replicative senescence, but whether mesenchymal stem cells enter different pre-senescent and senescent states has remained unclear. To address this knowledge gap, we subjected serially passaged human ESC-derived mesenchymal stem cells (esMSCs) to single cell profiling and single cell RNA-sequencing during their progressive entry into replicative senescence. We found that esMSC transitioned through newly identified pre-senescent cell states before entering into three different senescent cell states. By deconstructing this heterogeneity and temporally ordering these pre-senescent and senescent esMSC subpopulations into developmental trajectories, we identified markers and predicted drivers of these cell states. Regulatory networks that capture connections between genes at each timepoint demonstrated a loss of connectivity, and specific genes altered their gene expression distributions as cells entered senescence. Collectively, this data reconciles previous observations that identified different senescence programs within an individual cell type and should enable the design of novel senotherapeutic regimes that can overcome in vitro MSC expansion constraints or that can perhaps slow organismal ageing.


Asunto(s)
Senescencia Celular , Células Madre Mesenquimatosas , Humanos , Senescencia Celular/fisiología , Células Madre Mesenquimatosas/metabolismo
5.
Trends Biotechnol ; 42(1): 1-4, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37949777

RESUMEN

Undergraduate laboratory course components often provide training in various techniques without connections to an interlinked real-world scenario. This article emphasizes the benefits of longitudinal integration of research techniques to enhance learning and emphasize societal relevance. An example of a biomedical engineering challenge involving a new pandemic is described.


Asunto(s)
Ingeniería Biomédica , Aprendizaje , Proyectos de Investigación
6.
APL Bioeng ; 7(2): 021501, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37180733

RESUMEN

Low back pain is the leading cause of disability, producing a substantial socio-economic burden on healthcare systems worldwide. Intervertebral disc (IVD) degeneration is a primary cause of lower back pain, and while regenerative therapies aimed at full functional recovery of the disc have been developed in recent years, no commercially available, approved devices or therapies for the regeneration of the IVD currently exist. In the development of these new approaches, numerous models for mechanical stimulation and preclinical assessment, including in vitro cell studies using microfluidics, ex vivo organ studies coupled with bioreactors and mechanical testing rigs, and in vivo testing in a variety of large and small animals, have emerged. These approaches have provided different capabilities, certainly improving the preclinical evaluation of these regenerative therapies, but challenges within the research environment, and compromises relating to non-representative mechanical stimulation and unrealistic test conditions, remain to be resolved. In this review, insights into the ideal characteristics of a disc model for the testing of IVD regenerative approaches are first assessed. Key learnings from in vivo, ex vivo, and in vitro IVD models under mechanical loading stimulation to date are presented alongside the merits and limitations of each model based on the physiological resemblance to the human IVD environment (biological and mechanical) as well as the possible feedback and output measurements for each approach. When moving from simplified in vitro models to ex vivo and in vivo approaches, the complexity increases resulting in less controllable models but providing a better representation of the physiological environment. Although cost, time, and ethical constraints are dependent on each approach, they escalate with the model complexity. These constraints are discussed and weighted as part of the characteristics of each model.

7.
EMBO J ; 42(13): e112095, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37226896

RESUMEN

The unique nerve terminal targeting of botulinum neurotoxin type A (BoNT/A) is due to its capacity to bind two receptors on the neuronal plasma membrane: polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Whether and how PSGs and SV2 may coordinate other proteins for BoNT/A recruitment and internalization remains unknown. Here, we demonstrate that the targeted endocytosis of BoNT/A into synaptic vesicles (SVs) requires a tripartite surface nanocluster. Live-cell super-resolution imaging and electron microscopy of catalytically inactivated BoNT/A wildtype and receptor-binding-deficient mutants in cultured hippocampal neurons demonstrated that BoNT/A must bind coincidentally to a PSG and SV2 to target synaptic vesicles. We reveal that BoNT/A simultaneously interacts with a preassembled PSG-synaptotagmin-1 (Syt1) complex and SV2 on the neuronal plasma membrane, facilitating Syt1-SV2 nanoclustering that controls endocytic sorting of the toxin into synaptic vesicles. Syt1 CRISPRi knockdown suppressed BoNT/A- and BoNT/E-induced neurointoxication as quantified by SNAP-25 cleavage, suggesting that this tripartite nanocluster may be a unifying entry point for selected botulinum neurotoxins that hijack this for synaptic vesicle targeting.


Asunto(s)
Toxinas Botulínicas Tipo A , Toxinas Botulínicas Tipo A/metabolismo , Membrana Celular/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Ratas
8.
Biomater Adv ; 136: 212782, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35929332

RESUMEN

The extracellular matrix (ECM) is an essential component of the tumor microenvironment. It plays a critical role in regulating cell-cell and cell-matrix interactions. However, there is lack of systematic and comparative studies on different widely-used ECM mimicking hydrogels and their properties, making the selection of suitable hydrogels for mimicking different in vivo conditions quite random. This study systematically evaluates the biophysical attributes of three widely used natural hydrogels (Matrigel, collagen gel and agarose gel) including complex modulus, loss tangent, diffusive permeability and pore size. A new and facile method was developed combining Critical Point Drying, Scanning Electron Microscopy imaging and a MATLAB image processing program (CSM method) for the characterization of hydrogel microstructures. This CSM method allows accurate measurement of the hydrogel pore size down to nanometer resolution. Furthermore, a microfluidic device was implemented to measure the hydrogel permeability (Pd) as a function of particle size and gel concentration. Among the three gels, collagen gel has the lowest complex modulus, medium pore size, and the highest loss tangent. Agarose gel exhibits the highest complex modulus, the lowest loss tangent and the smallest pore size. Collagen gel and Matrigel produced complex moduli close to that estimated for cancer ECM. The Pd of these hydrogels decreases significantly with the increase of particle size. By assessing different hydrogels' biophysical characteristics, this study provides valuable insights for tailoring their properties for various three-dimensional cancer models.


Asunto(s)
Matriz Extracelular , Hidrogeles , Neoplasias , Fenómenos Biofísicos , Colágeno/análisis , Matriz Extracelular/química , Humanos , Hidrogeles/análisis , Sefarosa/análisis , Microambiente Tumoral
9.
APL Bioeng ; 6(3): 030402, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35996390
10.
Adv Sci (Weinh) ; 9(3): e2103631, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34825784

RESUMEN

Although degeneration of the nucleus pulposus (NP) is a major contributor to intervertebral disc degeneration (IVDD) and low back pain, the underlying molecular complexity and cellular heterogeneity remain poorly understood. Here, a comprehensive single-cell resolution transcript landscape of human NP is reported. Six novel human NP cells (NPCs) populations are identified by their distinct molecular signatures. The potential functional differences among NPC subpopulations are analyzed. Predictive transcripts, transcriptional factors, and signal pathways with respect to degeneration grades are explored. It is reported that fibroNPCs is the subpopulation for end-stage degeneration. CD90+NPCs are observed to be progenitor cells in degenerative NP tissues. NP-infiltrating immune cells comprise a previously unrecognized diversity of cell types, including granulocytic myeloid-derived suppressor cells (G-MDSCs). Integrin αM (CD11b) and oxidized low density lipoprotein receptor 1 (OLR1) as surface markers of NP-derived G-MDSCs are uncovered. The G-MDSCs are found to be enriched in mildly degenerated (grade II and III) NP tissues compared to severely degenerated (grade IV and V) NP tissues. Their immunosuppressive function and alleviation effects on NPCs' matrix degradation are revealed in vitro. Collectively, this study reveals the NPC-type complexity and phenotypic characteristics in NP, thereby providing new insights and clues for IVDD treatment.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/fisiopatología , Núcleo Pulposo/metabolismo , Células Madre/metabolismo , Femenino , Humanos , Disco Intervertebral/metabolismo , Masculino , Persona de Mediana Edad , Transducción de Señal
11.
Chem Rev ; 121(18): 10792-10864, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34213880

RESUMEN

Many existing clinical treatments are limited in their ability to completely restore decreased or lost tissue and organ function, an unenviable situation only further exacerbated by a globally aging population. As a result, the demand for new medical interventions has increased substantially over the past 20 years, with the burgeoning fields of gene therapy, tissue engineering, and regenerative medicine showing promise to offer solutions for full repair or replacement of damaged or aging tissues. Success in these fields, however, inherently relies on biomaterials that are engendered with the ability to provide the necessary biological cues mimicking native extracellular matrixes that support cell fate. Accelerating the development of such "directive" biomaterials requires a shift in current design practices toward those that enable rapid synthesis and characterization of polymeric materials and the coupling of these processes with techniques that enable similarly rapid quantification and optimization of the interactions between these new material systems and target cells and tissues. This manuscript reviews recent advances in combinatorial and high-throughput (HT) technologies applied to polymeric biomaterial synthesis, fabrication, and chemical, physical, and biological screening with targeted end-point applications in the fields of gene therapy, tissue engineering, and regenerative medicine. Limitations of, and future opportunities for, the further application of these research tools and methodologies are also discussed.


Asunto(s)
Materiales Biocompatibles , Ingeniería de Tejidos , Materiales Biocompatibles/química , Matriz Extracelular , Polímeros , Medicina Regenerativa , Ingeniería de Tejidos/métodos
12.
Sci Rep ; 11(1): 2462, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510250

RESUMEN

Biological computation requires in vivo control of molecular behavior to progress development of autonomous devices. miRNA switches represent excellent, easily engineerable synthetic biology tools to achieve user-defined gene regulation. Here we present the construction of a synthetic network to implement detoxification functionality. We employed a modular design strategy by engineering toxin-induced control of an enzyme scavenger. Our miRNA switch results show moderate synthetic expression control over a biologically active detoxification enzyme molecule, using an established design protocol. However, following a new design approach, we demonstrated an evolutionarily designed miRNA switch to more effectively activate enzyme activity than synthetically designed versions, allowing markedly improved extrinsic user-defined control with a toxin as inducer. Our straightforward new design approach is simple to implement and uses easily accessible web-based databases and prediction tools. The ability to exert control of toxicity demonstrates potential for modular detoxification systems that provide a pathway to new therapeutic and biocomputing applications.


Asunto(s)
Enzimas/metabolismo , MicroARNs/genética , Biosíntesis de Proteínas/genética , Toxinas Biológicas/toxicidad , Secuencia de Bases , Citocromo P-450 CYP1A2/metabolismo , Activación Enzimática/efectos de los fármacos , Silenciador del Gen , Células HEK293 , Humanos , MicroARNs/química , MicroARNs/metabolismo , Conformación de Ácido Nucleico , Teofilina/farmacología , Factores de Tiempo
13.
J Tissue Eng ; 11: 2041731420954712, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178409

RESUMEN

Using microspherical scaffolds as building blocks to repair bone defects of specific size and shape has been proposed as a tissue engineering strategy. Here, phosphate glass (PG) microcarriers doped with 5 mol % TiO2 and either 0 mol % CoO (CoO 0%) or 2 mol % CoO (CoO 2%) were investigated for their ability to support osteogenic and vascular responses of human mesenchymal stem cells (hMSCs). Together with standard culture techniques, cell-material interactions were studied using a novel perfusion microfluidic bioreactor that enabled cell culture on microspheres, along with automated processing and screening of culture variables. While titanium doping was found to support hMSCs expansion and differentiation, as well as endothelial cell-derived vessel formation, additional doping with cobalt did not improve the functionality of the microspheres. Furthermore, the microfluidic bioreactor enabled screening of culture parameters for cell culture on microspheres that could be potentially translated to a scaled-up system for tissue-engineered bone manufacturing.

14.
Biomater Sci ; 8(20): 5677-5689, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32915185

RESUMEN

Mimicking the complex hierarchical architecture of the 'osteon', the functional unit of cortical bone, from the bottom-up offers the possibility of generating mature bone tissue in tissue engineered bone substitutes. In this work, a modular 'bottom-up' approach has been developed to assemble bone niche-mimicking nanocomposite scaffolds composed of aligned electrospun nanofibers of poly(lactic-co-glycolic acid) (PLGA) encapsulating aligned rod-shape nano-sized hydroxyapatite (nHA). By encoding axial orientation of the nHA within these aligned nanocomposite fibers, significant improvements in mechanical properties, surface roughness, hydrophilicity and in vitro simulated body fluid (SBF) mineral deposition were achieved. Moreover, these hierarchical scaffolds induced robust formation of bone hydroxyapatite and osteoblastic maturation of human bone marrow-derived mesenchymal stem cells (hBMSCs) in growth media that was absent of any soluble osteogenic differentiation factors. The results of this investigation confirm that these tailored, aligned nanocomposite fibers, in the absence of media-bone inductive factors, offer the requisite biophysical and biochemical cues to hBMSCs to promote and support their differentiation into mature osteoblast cells and form early bone-like tissue in vitro.


Asunto(s)
Durapatita , Células Madre Mesenquimatosas , Biomimética , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Señales (Psicología) , Glicoles , Humanos , Ácido Láctico , Osteogénesis , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ingeniería de Tejidos , Andamios del Tejido
15.
Nature ; 584(7822): 535-546, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32848221

RESUMEN

Substantial research over the past two decades has established that extracellular matrix (ECM) elasticity, or stiffness, affects fundamental cellular processes, including spreading, growth, proliferation, migration, differentiation and organoid formation. Linearly elastic polyacrylamide hydrogels and polydimethylsiloxane (PDMS) elastomers coated with ECM proteins are widely used to assess the role of stiffness, and results from such experiments are often assumed to reproduce the effect of the mechanical environment experienced by cells in vivo. However, tissues and ECMs are not linearly elastic materials-they exhibit far more complex mechanical behaviours, including viscoelasticity (a time-dependent response to loading or deformation), as well as mechanical plasticity and nonlinear elasticity. Here we review the complex mechanical behaviours of tissues and ECMs, discuss the effect of ECM viscoelasticity on cells, and describe the potential use of viscoelastic biomaterials in regenerative medicine. Recent work has revealed that matrix viscoelasticity regulates these same fundamental cell processes, and can promote behaviours that are not observed with elastic hydrogels in both two- and three-dimensional culture microenvironments. These findings have provided insights into cell-matrix interactions and how these interactions differentially modulate mechano-sensitive molecular pathways in cells. Moreover, these results suggest design guidelines for the next generation of biomaterials, with the goal of matching tissue and ECM mechanics for in vitro tissue models and applications in regenerative medicine.


Asunto(s)
Elasticidad , Matriz Extracelular/metabolismo , Sustancias Viscoelásticas , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Técnicas de Cultivo de Célula , Forma de la Célula , Matriz Extracelular/química , Humanos , Mecanotransducción Celular , Células Madre Mesenquimatosas/citología , Modelos Biológicos , Medicina Regenerativa
16.
J Mech Behav Biomed Mater ; 104: 103691, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32174435

RESUMEN

Titanium-niobium (Ti-Nb) alloys have great potential for biomedical applications due to their superior biocompatibility and mechanical properties that match closely to human bone. Powder metallurgy is an ideal technology for efficient manufacture of titanium alloys to generate net-shape, intricately featured and porous components. This work reports on the effects of Nb concentrations on sintered Ti-xNb alloys with the aim to establish an optimal composition in respect to mechanical and biological performances. Ti-xNb alloys with 33, 40, 56 and 66 wt% Nb were fabricated from elemental powders and the sintering response, mechanical properties, microstructures and biocompatibility assessed and compared to conventional commercial purity titanium (CPTi). The sintered densities for all Ti-xNb compositions were around 95%, reducing slightly with increasing Nb due to increasing open porosity. Higher Nb levels retarded sintering leading to more inhomogeneous phase and pore distributions. The compressive strength decreased with increasing Nb, while all Ti-xNb alloys displayed higher strengths than CPTi except the Ti-66Nb alloy. The Young's moduli of the Ti-xNb alloys with ≥40 wt% Nb were substantially lower (30-50%) than CPTi. In-vitro cell culture testing revealed excellent biocompatibility for all Ti-xNb alloys comparable or better than tissue culture plate and CPTi controls, with the Ti-40Nb alloy exhibiting superior cell-material interactions. In view of its mechanical and biological performance, the Ti-40Nb composition is most promising for hard tissue engineering applications.


Asunto(s)
Niobio , Titanio , Aleaciones , Materiales Biocompatibles , Humanos , Ensayo de Materiales
17.
APL Bioeng ; 4(1): 010401, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32161831
18.
APL Bioeng ; 4(1): 010402, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32161832
19.
Sci Adv ; 6(2): eaaw2746, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31934619

RESUMEN

Creating complex multicellular kidney organoids from pluripotent stem cells shows great promise. Further improvements in differentiation outcomes, patterning, and maturation of specific cell types are, however, intrinsically limited by standard tissue culture approaches. We describe a novel full factorial microbioreactor array-based methodology to achieve rapid interrogation and optimization of this complex multicellular differentiation process in a facile manner. We successfully recapitulate early kidney tissue patterning events, exploring more than 1000 unique conditions in an unbiased and quantitative manner, and define new media combinations that achieve near-pure renal cell type specification. Single-cell resolution identification of distinct renal cell types within multilayered kidney organoids, coupled with multivariate analysis, defined the definitive roles of Wnt, fibroblast growth factor, and bone morphogenetic protein signaling in their specification, exposed retinoic acid as a minimal effector of nephron patterning, and highlighted critical contributions of induced paracrine factors on cell specification and patterning.


Asunto(s)
Riñón/crecimiento & desarrollo , Organoides/crecimiento & desarrollo , Comunicación Paracrina , Perfusión , Células Madre Pluripotentes/citología , Reactores Biológicos , Humanos , Riñón/efectos de los fármacos , Análisis Multivariante , Nefronas/citología , Nefronas/efectos de los fármacos , Organoides/efectos de los fármacos , Comunicación Paracrina/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Tretinoina/farmacología , Vía de Señalización Wnt/efectos de los fármacos
20.
ACS Nano ; 13(10): 11129-11143, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31580055

RESUMEN

The ability of mesenchymal stem cells to sense nanoscale variations in extracellular matrix (ECM) compositions in their local microenvironment is crucial to their survival and their fate; however, the underlying molecular mechanisms defining how such fates are temporally modulated remain poorly understood. In this work, we have utilized self-assembled block copolymer surfaces to present nanodomains of an adhesive peptide found in many ECM proteins at different lateral spacings (from 30 to 60 nm) and studied the temporal response (2 h to 14 days) of human mesenchymal stem cells (hMSCs) using a panel of real-time localization and activity biosensors. Our findings revealed that within the first 4 to 24 h postadhesion and spreading, hMSCs on smaller nanodomain spacings recruit more activated FAK and Src proteins to produce larger, longer-lived, and increased numbers of focal adhesions (FAs). The adhesions formed on smaller nanospacings rapidly recruit higher amounts of nonmuscle myosin IIA and vinculin and experience tension forces (by >5 pN/FA) significantly higher than those observed on larger nanodomain spacings. The transmission of higher levels of tension into the cytoskeleton at short times was accompanied by higher Rac1, cytosolic ß-catenin, and nuclear localization of YAP/TAZ and RUNX2, which together biased the commitment of hMSCs to an osteogenic fate. This investigation provides mechanistic insights to confirm that smaller lateral spacings of adhesive nanodomains alter hMSC mechanosensing and biases mechanotransduction at short times via differential coupling of FAK/Src/Rac1/myosin IIA/YAP/TAZ signaling pathways to support longer-term changes in stem cell differentiation and state.


Asunto(s)
Adipogénesis/genética , Linaje de la Célula/genética , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Adipogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Citoesqueleto/efectos de los fármacos , Citoesqueleto/genética , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/genética , Adhesiones Focales/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Polímeros/química , Polímeros/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genética , Proteínas Señalizadoras YAP , beta Catenina/genética , Proteína de Unión al GTP rac1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...