Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Nucleic Acids Res ; 52(17): 10329-10340, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39106165

RESUMEN

The mitochondrial single-stranded DNA (ssDNA) binding protein, mtSSB or SSBP1, binds to ssDNA to prevent secondary structures of DNA that could impede downstream replication or repair processes. Clinical mutations in the SSBP1 gene have been linked to a range of mitochondrial disorders affecting nearly all organs and systems. Yet, the molecular determinants governing the interaction between mtSSB and ssDNA have remained elusive. Similarly, the structural interaction between mtSSB and other replisome components, such as the mitochondrial DNA polymerase, Polγ, has been minimally explored. Here, we determined a 1.9-Å X-ray crystallography structure of the human mtSSB bound to ssDNA. This structure uncovered two distinct DNA binding sites, a low-affinity site and a high-affinity site, confirmed through site-directed mutagenesis. The high-affinity binding site encompasses a clinically relevant residue, R38, and a highly conserved DNA base stacking residue, W84. Employing cryo-electron microscopy, we confirmed the tetrameric assembly in solution and capture its interaction with Polγ. Finally, we derived a model depicting modes of ssDNA wrapping around mtSSB and a region within Polγ that mtSSB binds.


Asunto(s)
ADN Polimerasa gamma , ADN de Cadena Simple , Proteínas de Unión al ADN , Modelos Moleculares , Unión Proteica , ADN Polimerasa gamma/metabolismo , ADN Polimerasa gamma/química , ADN Polimerasa gamma/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/química , Humanos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Cristalografía por Rayos X , Sitios de Unión , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Microscopía por Crioelectrón
2.
Eur J Med Genet ; 71: 104968, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39209150

RESUMEN

TAF1A, a gene encoding a TATA-box binding protein involved in ribosomal RNA synthesis, is a candidate gene for pediatric cardiomyopathy as biallelic TAF1A variants were reported in two families with affected individuals. Here, we report a third family with two siblings who presented with infantile restrictive cardiomyopathy and carried biallelic missense variants in TAF1A (NM_001201536.1:c.1021G>A p.(Gly341Arg) and c.781A>C p.(Thr261Pro)). Additional shared clinical features in the siblings included feeding intolerance, congenital leukoencephalopathy, ventriculomegaly and concern for primary immunodeficiency. The first-born sibling passed away at 6 months of age due to complications of hemophagocytic lymphohistiocytosis (HLH) whereas the second sibling underwent cardiac transplantation at 1 year of age and is currently well. We compare the clinical and molecular features of all the TAF1A associated cardiomyopathy cases. Our study adds evidence for the gene-disease association of TAF1A with autosomal recessive pediatric cardiomyopathy.


Asunto(s)
Cardiomiopatía Restrictiva , Mutación Missense , Hermanos , Factores Asociados con la Proteína de Unión a TATA , Factor de Transcripción TFIID , Humanos , Masculino , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética , Femenino , Lactante , Cardiomiopatía Restrictiva/genética , Cardiomiopatía Restrictiva/patología , Linaje , Alelos , Fenotipo , Histona Acetiltransferasas
3.
Nucleic Acids Res ; 52(13): 7863-7875, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38932681

RESUMEN

The replicative mitochondrial DNA polymerase, Polγ, and its protein regulation are essential for the integrity of the mitochondrial genome. The intricacies of Polγ regulation and its interactions with regulatory proteins, which are essential for fine-tuning polymerase function, remain poorly understood. Misregulation of the Polγ heterotrimer, consisting of (i) PolG, the polymerase catalytic subunit and (ii) PolG2, the accessory subunit, ultimately results in mitochondrial diseases. Here, we used single particle cryo-electron microscopy to resolve the structure of PolG in its apoprotein state and we captured Polγ at three intermediates within the catalytic cycle: DNA bound, engaged, and an active polymerization state. Chemical crosslinking mass spectrometry, and site-directed mutagenesis uncovered the region of LonP1 engagement of PolG, which promoted proteolysis and regulation of PolG protein levels. PolG2 clinical variants, which disrupted a stable Polγ complex, led to enhanced LonP1-mediated PolG degradation. Overall, this insight into Polγ aids in an understanding of mitochondrial DNA replication and characterizes how machinery of the replication fork may be targeted for proteolytic degradation when improperly functioning.


Asunto(s)
ADN Polimerasa gamma , Replicación del ADN , ADN Mitocondrial , Proteínas Mitocondriales , Polimerizacion , Proteolisis , ADN Polimerasa gamma/metabolismo , ADN Polimerasa gamma/genética , Humanos , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/química , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/química , Proteasas ATP-Dependientes/metabolismo , Proteasas ATP-Dependientes/genética
4.
Nucleic Acids Res ; 51(18): 9716-9732, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37592734

RESUMEN

The homodimeric PolG2 accessory subunit of the mitochondrial DNA polymerase gamma (Pol γ) enhances DNA binding and processive DNA synthesis by the PolG catalytic subunit. PolG2 also directly binds DNA, although the underlying molecular basis and functional significance are unknown. Here, data from Atomic Force Microscopy (AFM) and X-ray structures of PolG2-DNA complexes define dimeric and hexameric PolG2 DNA binding modes. Targeted disruption of PolG2 DNA-binding interfaces impairs processive DNA synthesis without diminishing Pol γ subunit affinities. In addition, a structure-specific DNA-binding role for PolG2 oligomers is supported by X-ray structures and AFM showing that oligomeric PolG2 localizes to DNA crossings and targets forked DNA structures resembling the mitochondrial D-loop. Overall, data indicate that PolG2 DNA binding has both PolG-dependent and -independent functions in mitochondrial DNA replication and maintenance, which provide new insight into molecular defects associated with PolG2 disruption in mitochondrial disease.


Asunto(s)
ADN Polimerasa gamma , ADN Mitocondrial , Humanos , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/metabolismo , Replicación del ADN/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo
5.
Mol Genet Metab Rep ; 34: 100958, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36873250

RESUMEN

[This corrects the article DOI: 10.1016/j.ymgmr.2022.100890.].

6.
Methods Mol Biol ; 2615: 427-441, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807807

RESUMEN

Mitochondrial DNA (mtDNA) encodes components essential for cellular respiration. Low levels of point mutations and deletions accumulate in mtDNA during normal aging. However, improper maintenance of mtDNA results in mitochondrial diseases, stemming from progressive loss of mitochondrial function through the accelerated formation of deletions and mutations in mtDNA. To better understand the molecular mechanisms underlying the creation and propagation of mtDNA deletions, we developed the LostArc next-generation DNA sequencing pipeline to detect and quantify rare mtDNA species in small tissue samples. LostArc procedures are designed to minimize PCR amplification of mtDNA and instead achieve enrichment of mtDNA by selective destruction of nuclear DNA. This approach leads to cost-effective, high-depth sequencing of mtDNA with a sensitivity sufficient to identify one mtDNA deletion per million mtDNA circles. Here, we describe detailed protocols for isolation of genomic DNA from mouse tissues, enrichment of mtDNA through enzymatic destruction of linear nuclear DNA, and preparation of libraries for unbiased next-generation sequencing of mtDNA.


Asunto(s)
ADN Mitocondrial , Enfermedades Mitocondriales , Ratones , Animales , ADN Mitocondrial/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Mutación Puntual , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
7.
Elife ; 112022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35997703

RESUMEN

Finding the conditions to stabilize a macromolecular target for imaging remains the most critical barrier to determining its structure by cryo-electron microscopy (cryo-EM). While automation has significantly increased the speed of data collection, specimens are still screened manually, a laborious and subjective task that often determines the success of a project. Here, we present SmartScope, the first framework to streamline, standardize, and automate specimen evaluation in cryo-EM. SmartScope employs deep-learning-based object detection to identify and classify features suitable for imaging, allowing it to perform thorough specimen screening in a fully automated manner. A web interface provides remote control over the automated operation of the microscope in real time and access to images and annotation tools. Manual annotations can be used to re-train the feature recognition models, leading to improvements in performance. Our automated tool for systematic evaluation of specimens streamlines structure determination and lowers the barrier of adoption for cryo-EM.


Asunto(s)
Microscopía por Crioelectrón , Automatización , Microscopía por Crioelectrón/métodos , Sustancias Macromoleculares
8.
Proc Natl Acad Sci U S A ; 119(32): e2207459119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914129

RESUMEN

Twinkle is the mammalian helicase vital for replication and integrity of mitochondrial DNA. Over 90 Twinkle helicase disease variants have been linked to progressive external ophthalmoplegia and ataxia neuropathies among other mitochondrial diseases. Despite the biological and clinical importance, Twinkle represents the only remaining component of the human minimal mitochondrial replisome that has yet to be structurally characterized. Here, we present 3-dimensional structures of human Twinkle W315L. Employing cryo-electron microscopy (cryo-EM), we characterize the oligomeric assemblies of human full-length Twinkle W315L, define its multimeric interface, and map clinical variants associated with Twinkle in inherited mitochondrial disease. Cryo-EM, crosslinking-mass spectrometry, and molecular dynamics simulations provide insight into the dynamic movement and molecular consequences of the W315L clinical variant. Collectively, this ensemble of structures outlines a framework for studying Twinkle function in mitochondrial DNA replication and associated disease states.


Asunto(s)
Microscopía por Crioelectrón , ADN Helicasas , Enfermedades Mitocondriales , Proteínas Mitocondriales , Multimerización de Proteína , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Helicasas/ultraestructura , Replicación del ADN , ADN Mitocondrial/biosíntesis , Humanos , Espectrometría de Masas , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Simulación de Dinámica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura
9.
Mol Genet Metab Rep ; 32: 100890, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35860755

RESUMEN

POLG gene mutations are the most common causes of inherited mitochondrial disorders. The enzyme produced by this gene is responsible for the replication and repair of mitochondrial DNA. To date, around 300 pathogenic variants have been described in this gene. The resulting clinical outcomes of POLG mutations are widely variable in both phenotype and severity. There is considerable overlap in the phenotype of the so-called POLG syndromes with no clear genotype-phenotype correlation. Here we describe a newly discovered pathogenic variant in the POLG gene in a 7-year-old male that died of uncontrollable refractory status epilepticus. Genetic epilepsy panel sequencing identified two variants in the POLG gene, the common p.A467T pathological mutation and a novel p.S809R POLG variant found in trans with the p.A467T POLG that accompanied a severely reduced mitochondrial DNA level in the patient's tissues.

10.
Methods ; 205: 263-270, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779765

RESUMEN

The mitochondrial replisome replicates the 16.6 kb mitochondria DNA (mtDNA). The proper functioning of this multicomponent protein complex is vital for the integrity of the mitochondrial genome. One of the critical protein components of the mitochondrial replisome is the Twinkle helicase, a member of the Superfamily 4 (SF4) helicases. Decades of research has uncovered common themes among SF4 helicases including self-assembly, ATP-dependent translocation, and formation of protein-protein complexes. Some of the molecular details of these processes are still unknown for the mitochondria SF4 helicase, Twinkle. Here, we describe a protocol for expression, purification, and single-particle cryo-electron microscopy of the Twinkle helicase clinical variant, W315L, which resulted in the first high-resolution structure of Twinkle helicase. The methods described here serve as an adaptable protocol to support future high-resolution studies of Twinkle helicase or other SF4 helicases.


Asunto(s)
ADN Helicasas , ADN Mitocondrial , Microscopía por Crioelectrón , ADN Helicasas/química , Replicación del ADN , ADN Mitocondrial/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
11.
FEBS Open Bio ; 12(9): 1567-1583, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35445579

RESUMEN

Coronaviruses use approximately two-thirds of their 30-kb genomes to encode nonstructural proteins (nsps) with diverse functions that assist in viral replication and transcription, and evasion of the host immune response. The SARS-CoV-2 pandemic has led to renewed interest in the molecular mechanisms used by coronaviruses to infect cells and replicate. Among the 16 Nsps involved in replication and transcription, coronaviruses encode two ribonucleases that process the viral RNA-an exonuclease (Nsp14) and an endonuclease (Nsp15). In this review, we discuss recent structural and biochemical studies of these nucleases and the implications for drug discovery.


Asunto(s)
COVID-19 , Proteínas no Estructurales Virales , Humanos , Mutación , Ribonucleasas , SARS-CoV-2 , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
12.
J Biol Chem ; 298(1): 101518, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34942146

RESUMEN

Understanding the core replication complex of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential to the development of novel coronavirus-specific antiviral therapeutics. Among the proteins required for faithful replication of the SARS-CoV-2 genome are nonstructural protein 14 (NSP14), a bifunctional enzyme with an N-terminal 3'-to-5' exoribonuclease (ExoN) and a C-terminal N7-methyltransferase, and its accessory protein, NSP10. The difficulty in producing pure and high quantities of the NSP10/14 complex has hampered the biochemical and structural study of these important proteins. We developed a straightforward protocol for the expression and purification of both NSP10 and NSP14 from Escherichia coli and for the in vitro assembly and purification of a stoichiometric NSP10/14 complex with high yields. Using these methods, we observe that NSP10 provides a 260-fold increase in kcat/Km in the exoribonucleolytic activity of NSP14 and enhances protein stability. We also probed the effect of two small molecules on NSP10/14 activity, remdesivir monophosphate and the methyltransferase inhibitor S-adenosylhomocysteine. Our analysis highlights two important factors for drug development: first, unlike other exonucleases, the monophosphate nucleoside analog intermediate of remdesivir does not inhibit NSP14 activity; and second, S-adenosylhomocysteine modestly activates NSP14 exonuclease activity. In total, our analysis provides insights for future structure-function studies of SARS-CoV-2 replication fidelity for the treatment of coronavirus disease 2019.


Asunto(s)
Antivirales/farmacología , Exorribonucleasas/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales/metabolismo , Activación Enzimática , Replicación Viral/efectos de los fármacos
13.
Case Rep Genet ; 2021: 9969071, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777884

RESUMEN

Mitochondrial DNA (mtDNA) depletion syndromes are a group of autosomal recessive disorders associated with a spectrum of clinical diseases, which include progressive external ophthalmoplegia (PEO). They are caused by variants in nuclear DNA (nDNA) encoded genes, and the gene that encodes for mtDNA polymerase gamma (POLG) is commonly involved. A splice-site mutation in POLG, c.3104+3A > T, was previously identified in three families with findings of PEO, and studies demonstrated this variant to result in skipping of exon 19. Here, we report a 57-year-old female who presented with ophthalmoplegia, ptosis, muscle weakness, and exercise intolerance with a subsequent muscle biopsy demonstrating mitochondrial myopathy on histopathologic evaluation and multiple mtDNA deletions by southern blot analysis. Whole-exome sequencing identified the previously characterized c. 3104+3A > T splice-site mutation in compound heterozygosity with a novel frameshift variant, p.Gly23Serfs ∗ 236 (c.67_88del). mtDNA copy number analysis performed on the patient's muscle showed mtDNA depletion, as expected in a patient with biallelic pathogenic mutations in POLG. This is the first reported case with POLG p.Gly23Serfs ∗ 236, discovered in a patient presenting with features of PEO.

14.
Bio Protoc ; 11(17): e4139, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34604445

RESUMEN

Understanding the structure and dynamics of DNA-protein interactions during DNA replication is crucial for elucidating the origins of disorders arising from its dysfunction. In this study, we employed Atomic Force Microscopy as a single-molecule imaging tool to examine the mitochondrial DNA helicase Twinkle and its interactions with DNA. We used imaging in air and time-lapse imaging in liquids to observe the DNA binding and unwinding activities of Twinkle hexamers at the single-molecule level. These procedures helped us visualize Twinkle loading onto and unloading from the DNA in the open-ring conformation. Using traditional methods, it has been shown that Twinkle is capable of unwinding dsDNA up to 20-55 bps. We found that the addition of mitochondrial single-stranded DNA binding protein (mtSSB) facilitates a 5-fold increase in the DNA unwinding rate for the Twinkle helicase. The protocols developed in this study provide new platforms to examine DNA replication and to explore the mechanism driving DNA deletion and human diseases. Graphic abstract: Mitochondrial Twinkle Helicase Dynamics.

15.
DNA Repair (Amst) ; 107: 103212, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34464898

RESUMEN

Several mutations in the gene for the mitochondrial single stranded DNA binding protein (SSBP1) have recently been implicated in human disease, but initial reports are insufficient to explain the molecular mechanism of disease, including the possible role of SSBP1 heterotetramers in heterozygous patients. Here we employed molecular simulations to model the dynamics of wild type and 31 variant SSBP1 tetramer systems, including 7 variant homotetramer and 24 representative heterotetramer systems. Our simulations indicate that all variants are stable and most have stronger intermonomer interactions, reduced solvent accessible surface areas, and a net loss of positive surface charge. We then used structural alignments and phosphate binding simulations to predict DNA binding surfaces on SSBP1. Our models suggest that nearly the entire surface of SSBP1, excluding flexible loops and protruding helices, is available for DNA binding, and we observed several potential DNA binding hotspots. Changes to the protein surface in variant SSBP1 tetramers potentially alter anchor points or wrapping paths, rather than abolishing binding altogether. Overall, our findings disqualify tetramer destabilization or gross disruption of DNA binding as mechanisms of disease. Instead, they are consistent with subtle changes to DNA binding, wrapping, or release that cause rare but consequential failures of mtDNA maintenance, which, in turn, are consistent with the late onset of disease in most of the reported SSBP1 cases.


Asunto(s)
Simulación de Dinámica Molecular
16.
DNA Repair (Amst) ; 93: 102916, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-33087282

RESUMEN

Maintenance and replication of the mitochondrial genome (mtDNA) is essential to mitochondrial function and eukaryotic energy production through the electron transport chain. mtDNA is replicated by a core set of proteins: Pol γ, Twinkle, and the single-stranded DNA binding protein. Fewer pathways exist for repair of mtDNA than nuclear DNA, and unrepaired damage to mtDNA may accumulate and lead to dysfunctional mitochondria. The mitochondrial genome is susceptible to damage by both endogenous and exogenous sources. Missense mutations to the nuclear genes encoding the core mtDNA replisome (POLG, POLG2, TWNK, and SSBP1) cause changes to the biochemical functions of their protein products. These protein variants can damage mtDNA and perturb oxidative phosphorylation. Ultimately, these mutations cause a diverse set of diseases that can affect virtually every system in the body. Here, we briefly review the mechanisms of mtDNA damage and the clinical consequences of disease variants of the core mtDNA replisome.


Asunto(s)
ADN Helicasas/genética , ADN Polimerasa gamma/genética , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , ADN Helicasas/metabolismo , ADN Polimerasa gamma/metabolismo , Replicación del ADN , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Genoma Mitocondrial , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo
17.
Genome Biol ; 21(1): 248, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32943091

RESUMEN

BACKGROUND: Acquired human mitochondrial genome (mtDNA) deletions are symptoms and drivers of focal mitochondrial respiratory deficiency, a pathological hallmark of aging and late-onset mitochondrial disease. RESULTS: To decipher connections between these processes, we create LostArc, an ultrasensitive method for quantifying deletions in circular mtDNA molecules. LostArc reveals 35 million deletions (~ 470,000 unique spans) in skeletal muscle from 22 individuals with and 19 individuals without pathogenic variants in POLG. This nuclear gene encodes the catalytic subunit of replicative mitochondrial DNA polymerase γ. Ablation, the deleted mtDNA fraction, suffices to explain skeletal muscle phenotypes of aging and POLG-derived disease. Unsupervised bioinformatic analyses reveal distinct age- and disease-correlated deletion patterns. CONCLUSIONS: These patterns implicate replication by DNA polymerase γ as the deletion driver and suggest little purifying selection against mtDNA deletions by mitophagy in postmitotic muscle fibers. Observed deletion patterns are best modeled as mtDNA deletions initiated by replication fork stalling during strand displacement mtDNA synthesis.


Asunto(s)
ADN Polimerasa gamma/genética , ADN Mitocondrial/análisis , Técnicas Genéticas , Enfermedades Mitocondriales/genética , Eliminación de Secuencia , Programas Informáticos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Envejecimiento/patología , Replicación del ADN , ADN Mitocondrial/metabolismo , Células HEK293 , Humanos , Persona de Mediana Edad , Músculo Cuádriceps/química , Músculo Cuádriceps/patología , Adulto Joven
18.
J Biol Chem ; 295(17): 5564-5576, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213598

RESUMEN

Knowledge of the molecular events in mitochondrial DNA (mtDNA) replication is crucial to understanding the origins of human disorders arising from mitochondrial dysfunction. Twinkle helicase is an essential component of mtDNA replication. Here, we employed atomic force microscopy imaging in air and liquids to visualize ring assembly, DNA binding, and unwinding activity of individual Twinkle hexamers at the single-molecule level. We observed that the Twinkle subunits self-assemble into hexamers and higher-order complexes that can switch between open and closed-ring configurations in the absence of DNA. Our analyses helped visualize Twinkle loading onto and unloading from DNA in an open-ringed configuration. They also revealed that closed-ring conformers bind and unwind several hundred base pairs of duplex DNA at an average rate of ∼240 bp/min. We found that the addition of mitochondrial single-stranded (ss) DNA-binding protein both influences the ways Twinkle loads onto defined DNA substrates and stabilizes the unwound ssDNA product, resulting in a ∼5-fold stimulation of the apparent DNA-unwinding rate. Mitochondrial ssDNA-binding protein also increased the estimated translocation processivity from 1750 to >9000 bp before helicase disassociation, suggesting that more than half of the mitochondrial genome could be unwound by Twinkle during a single DNA-binding event. The strategies used in this work provide a new platform to examine Twinkle disease variants and the core mtDNA replication machinery. They also offer an enhanced framework to investigate molecular mechanisms underlying deletion and depletion of the mitochondrial genome as observed in mitochondrial diseases.


Asunto(s)
ADN Helicasas/metabolismo , ADN/metabolismo , Proteínas Mitocondriales/metabolismo , ADN/análisis , ADN Helicasas/análisis , Humanos , Microscopía de Fuerza Atómica , Mitocondrias/metabolismo , Proteínas Mitocondriales/análisis , Conformación de Ácido Nucleico , Unión Proteica , Multimerización de Proteína , Proteínas Recombinantes/análisis , Proteínas Recombinantes/metabolismo
19.
J Clin Invest ; 130(1): 108-125, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31550240

RESUMEN

Inherited optic neuropathies include complex phenotypes, mostly driven by mitochondrial dysfunction. We report an optic atrophy spectrum disorder, including retinal macular dystrophy and kidney insufficiency leading to transplantation, associated with mitochondrial DNA (mtDNA) depletion without accumulation of multiple deletions. By whole-exome sequencing, we identified mutations affecting the mitochondrial single-strand binding protein (SSBP1) in 4 families with dominant and 1 with recessive inheritance. We show that SSBP1 mutations in patient-derived fibroblasts variably affect the amount of SSBP1 protein and alter multimer formation, but not the binding to ssDNA. SSBP1 mutations impaired mtDNA, nucleoids, and 7S-DNA amounts as well as mtDNA replication, affecting replisome machinery. The variable mtDNA depletion in cells was reflected in severity of mitochondrial dysfunction, including respiratory efficiency, OXPHOS subunits, and complex amount and assembly. mtDNA depletion and cytochrome c oxidase-negative cells were found ex vivo in biopsies of affected tissues, such as kidney and skeletal muscle. Reduced efficiency of mtDNA replication was also reproduced in vitro, confirming the pathogenic mechanism. Furthermore, ssbp1 suppression in zebrafish induced signs of nephropathy and reduced optic nerve size, the latter phenotype complemented by WT mRNA but not by SSBP1 mutant transcripts. This previously unrecognized disease of mtDNA maintenance implicates SSBP1 mutations as a cause of human pathology.


Asunto(s)
ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Proteínas Mitocondriales/genética , Mutación , Atrofias Ópticas Hereditarias/genética , Animales , ADN Polimerasa gamma/fisiología , Replicación del ADN , Proteínas de Unión al ADN/química , Exoma , Femenino , Humanos , Masculino , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Atrofias Ópticas Hereditarias/etiología , Pez Cebra
20.
J Biol Chem ; 295(51): 17802-17815, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33454015

RESUMEN

Faithful replication of the mitochondrial genome is carried out by a set of key nuclear-encoded proteins. DNA polymerase γ is a core component of the mtDNA replisome and the only replicative DNA polymerase localized to mitochondria. The asynchronous mechanism of mtDNA replication predicts that the replication machinery encounters dsDNA and unique physical barriers such as structured genes, G-quadruplexes, and other obstacles. In vitro experiments here provide evidence that the polymerase γ heterotrimer is well-adapted to efficiently synthesize DNA, despite the presence of many naturally occurring roadblocks. However, we identified a specific G-quadruplex-forming sequence at the heavy-strand promoter (HSP1) that has the potential to cause significant stalling of mtDNA replication. Furthermore, this structured region of DNA corresponds to the break site for a large (3,895 bp) deletion observed in mitochondrial disease patients. The presence of this deletion in humans correlates with UV exposure, and we have found that efficiency of polymerase γ DNA synthesis is reduced after this quadruplex is exposed to UV in vitro.


Asunto(s)
ADN Polimerasa gamma/metabolismo , ADN Mitocondrial/metabolismo , G-Cuádruplex , Biocatálisis , Replicación del ADN/efectos de la radiación , Humanos , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Regiones Promotoras Genéticas , Especificidad por Sustrato , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...