Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vis Neurosci ; 35: E004, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29905117

RESUMEN

A unique class of intrinsically photosensitive retinal ganglion cells in mammalian retinae has been recently discovered and characterized. These neurons can generate visual signals in the absence of inputs from rods and cones, the conventional photoreceptors in the visual system. These light sensitive ganglion cells (mRGCs) express the non-rod, non-cone photopigment melanopsin and play well documented roles in modulating pupil responses to light, photoentrainment of circadian rhythms, mood, sleep and other adaptive light functions. While most research efforts in mammals have focused on mRGCs in retina, recent studies reveal that melanopsin is expressed in non-retinal tissues. For example, light-evoked melanopsin activation in extra retinal tissue regulates pupil constriction in the iris and vasodilation in the vasculature of the heart and tail. As another example of nonretinal melanopsin expression we report here the previously unrecognized localization of this photopigment in nerve fibers within the cornea. Surprisingly, we were unable to detect light responses in the melanopsin-expressing corneal fibers in spite of our histological evidence based on genetically driven markers and antibody staining. We tested further for melanopsin localization in cell bodies of the trigeminal ganglia (TG), the principal nuclei of the peripheral nervous system that project sensory fibers to the cornea, and found expression of melanopsin mRNA in a subset of TG neurons. However, neither electrophysiological recordings nor calcium imaging revealed any light responsiveness in the melanopsin positive TG neurons. Given that we found no light-evoked activation of melanopsin-expressing fibers in cornea or in cell bodies in the TG, we propose that melanopsin protein might serve other sensory functions in the cornea. One justification for this idea is that melanopsin expressed in Drosophila photoreceptors can serve as a temperature sensor.


Asunto(s)
Córnea/metabolismo , Regulación de la Expresión Génica/fisiología , Opsinas de Bastones/genética , Ganglio del Trigémino/metabolismo , Animales , Cuerpo Celular/metabolismo , Células Cultivadas , Dependovirus/genética , Electrofisiología , Femenino , Cobayas , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fibras Nerviosas/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Opsinas de Bastones/metabolismo , Transfección
2.
PLoS One ; 11(2): e0149501, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26895233

RESUMEN

To understand visual functions mediated by intrinsically photosensitive melanopsin-expressing retinal ganglion cells (mRGCs), it is important to elucidate axonal projections from these cells into the brain. Initial studies reported that melanopsin is expressed only in retinal ganglion cells within the eye. However, recent studies in Opn4-Cre mice revealed Cre-mediated marker expression in multiple brain areas. These discoveries complicate the use of melanopsin-driven genetic labeling techniques to identify retinofugal projections specifically from mRGCs. To restrict labeling to mRGCs, we developed a recombinant adeno-associated virus (AAV) carrying a Cre-dependent reporter (human placental alkaline phosphatase) that was injected into the vitreous of Opn4-Cre mouse eyes. The labeling observed in the brain of these mice was necessarily restricted specifically to retinofugal projections from mRGCs in the injected eye. We found that mRGCs innervate multiple nuclei in the basal forebrain, hypothalamus, amygdala, thalamus and midbrain. Midline structures tended to be bilaterally innervated, whereas the lateral structures received mostly contralateral innervation. As validation of our approach, we found projection patterns largely corresponded with previously published results; however, we have also identified a few novel targets. Our discovery of projections to the central amygdala suggests a possible direct neural pathway for aversive responses to light in neonates. In addition, projections to the accessory optic system suggest that mRGCs play a direct role in visual tracking, responses that were previously attributed to other classes of retinal ganglion cells. Moreover, projections to the zona incerta raise the possibility that mRGCs could regulate visceral and sensory functions. However, additional studies are needed to investigate the actual photosensitivity of mRGCs that project to the different brain areas. Also, there is a concern of "overlabeling" with very sensitive reporters that uncover low levels of expression. Light-evoked signaling from these cells must be shown to be of sufficient sensitivity to elicit physiologically relevant responses.


Asunto(s)
Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/biosíntesis , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Dependovirus/genética , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Genes Reporteros , Humanos , Inyecciones Intraoculares , Integrasas/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Ratones Endogámicos C57BL , Retina/citología
3.
Ophthalmology ; 120(12): 2706-2713, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24139125

RESUMEN

PURPOSE: Fetal mice require light exposure in utero during early gestation for normal vascular development in the eye. Because angiogenic abnormalities in retinopathy of prematurity (ROP) are manifested in preterm infants, we investigated whether day length during early gestation was associated with severe ROP (SROP). DESIGN: Single-center, retrospective cohort study. PARTICIPANTS: We included a total of 343 premature infants (401-1250 g birth weight [BW], from 1998-2002): 684 eyes (1 eye each of 2 patients excluded) with 76 eyes developing SROP, defined as (1) classic threshold ROP in zone I or II, (2) type 1 ROP in zone I, or (3) in a few eyes, type 1 ROP in posterior zone II that was treated. METHODS: For each infant, average day length (ADL) was calculated during different cumulative time periods and time windows after the estimated date of conception (EDC). Multiple logistic regression analysis (with generalized estimating equations to account for inter-eye correlation) was performed. MAIN OUTCOME MEASURES: Association of ADL during early gestation with SROP. RESULTS: In a model evaluating all 684 eyes with 76 eyes developing SROP, BW, gestational age, multiple births, race, per capita income in the mother's residence ZIP code, and ADL during the first 90 days after the EDC were factors associated with the development of SROP. Each additional hour of ADL (90 days) decreased the likelihood of SROP by 28% (P = 0.015; odds ratio [OR], 0.72; 95% confidence interval [CI], 0.55-0.94). In a model evaluating the subset of 146 prethreshold ROP eyes with 76 eyes developing SROP, each additional hour of ADL during the first 105 days after the EDC decreased the likelihood of SROP by 46% (P = 0.001; OR, 0.54; 95% CI, 0.37-0.78). Time windows when ADL was most closely associated with SROP were 31 to 60 days and 61 to 90 days after the EDC for the all eyes and the prethreshold ROP eyes models, respectively. CONCLUSIONS: Higher ADL during early gestation was associated with a lower risk for SROP and may imply a role for prophylactic light treatment during early gestation to decrease the risk of SROP.


Asunto(s)
Recien Nacido Prematuro , Fotoperiodo , Embarazo , Retinopatía de la Prematuridad/etiología , Estudios de Cohortes , Femenino , Edad Gestacional , Humanos , Recién Nacido , Recién Nacido de muy Bajo Peso , Masculino , Paridad , Estudios Retrospectivos , Factores de Riesgo , Estaciones del Año , Factores de Tiempo
4.
Nature ; 494(7436): 243-6, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23334418

RESUMEN

Vascular patterning is critical for organ function. In the eye, there is simultaneous regression of embryonic hyaloid vasculature (important to clear the optical path) and formation of the retinal vasculature (important for the high metabolic demands of retinal neurons). These events occur postnatally in the mouse. Here we have identified a light-response pathway that regulates both processes. We show that when mice are mutated in the gene (Opn4) for the atypical opsin melanopsin, or are dark-reared from late gestation, the hyaloid vessels are persistent at 8 days post-partum and the retinal vasculature overgrows. We provide evidence that these vascular anomalies are explained by a light-response pathway that suppresses retinal neuron number, limits hypoxia and, as a consequence, holds local expression of vascular endothelial growth factor (VEGFA) in check. We also show that the light response for this pathway occurs in late gestation at about embryonic day 16 and requires the photopigment in the fetus and not the mother. Measurements show that visceral cavity photon flux is probably sufficient to activate melanopsin-expressing retinal ganglion cells in the mouse fetus. These data thus show that light--the stimulus for function of the mature eye--is also critical in preparing the eye for vision by regulating retinal neuron number and initiating a series of events that ultimately pattern the ocular blood vessels.


Asunto(s)
Ojo/irrigación sanguínea , Ojo/crecimiento & desarrollo , Feto/efectos de la radiación , Fototransducción/efectos de la radiación , Luz , Neuronas Retinianas/efectos de la radiación , Opsinas de Bastones/metabolismo , Animales , Recuento de Células , Hipoxia de la Célula/efectos de la radiación , Ojo/metabolismo , Ojo/efectos de la radiación , Femenino , Feto/citología , Feto/embriología , Feto/metabolismo , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica , Neovascularización Fisiológica/efectos de la radiación , Fotones , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de la radiación , Neuronas Retinianas/citología , Neuronas Retinianas/metabolismo , Opsinas de Bastones/deficiencia , Opsinas de Bastones/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
PLoS One ; 8(12): e83974, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24391855

RESUMEN

Melanopsin-expressing retinal ganglion cells (mRGCs) in the eye play an important role in many light-activated non-image-forming functions including neonatal photoaversion and the adult pupillary light reflex (PLR). MRGCs rely on glutamate and possibly PACAP (pituitary adenylate cyclase-activating polypeptide) to relay visual signals to the brain. However, the role of these neurotransmitters for individual non-image-forming responses remains poorly understood. To clarify the role of glutamatergic signaling from mRGCs in neonatal aversion to light and in adult PLR, we conditionally deleted vesicular glutamate transporter (VGLUT2) selectively from mRGCs in mice. We found that deletion of VGLUT2 in mRGCs abolished negative phototaxis and light-induced distress vocalizations in neonatal mice, underscoring a necessary role for glutamatergic signaling. In adult mice, loss of VGLUT2 in mRGCs resulted in a slow and an incomplete PLR. We conclude that glutamatergic neurotransmission from mRGCs is required for neonatal photoaversion but is complemented by another non-glutamatergic signaling mechanism for the pupillary light reflex in adult mice. We speculate that this complementary signaling might be due to PACAP neurotransmission from mRGCs.


Asunto(s)
Luz , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Reflejo Pupilar/fisiología , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/fisiología , Transmisión Sináptica/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología , Animales , Animales Recién Nacidos , Conducta Animal , Femenino , Técnicas para Inmunoenzimas , Integrasas/metabolismo , Fototransducción , Masculino , Ratones , Ratones Noqueados , Neurotransmisores/metabolismo , Estimulación Luminosa , Reflejo Pupilar/efectos de la radiación , Células Ganglionares de la Retina/efectos de la radiación , Trastornos de la Visión , Visión Ocular/fisiología , Visión Ocular/efectos de la radiación
6.
PLoS One ; 7(9): e43787, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23028470

RESUMEN

Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are the only functional photoreceptive cells in the eye of newborn mice. Through postnatal day 9, in the absence of functional rods and cones, these ipRGCs mediate a robust avoidance behavior to a light source, termed negative phototaxis. To determine whether this behavior is associated with an aversive experience in neonatal mice, we characterized light-induced vocalizations and patterns of neuronal activation in regions of the brain involved in the processing of aversive and painful stimuli. Light evoked distinct melanopsin-dependent ultrasonic vocalizations identical to those emitted under stressful conditions, such as isolation from the litter. In contrast, light did not evoke the broad-spectrum calls elicited by acute mechanical pain. Using markers of neuronal activation, we found that light induced the immediate-early gene product Fos in the posterior thalamus, a brain region associated with the enhancement of responses to mechanical stimulation of the dura by light, and thought to be the basis for migrainous photophobia. Additionally, light induced the phosphorylation of extracellular-related kinase (pERK) in neurons of the central amygdala, an intracellular signal associated with the processing of the aversive aspects of pain. However, light did not activate Fos expression in the spinal trigeminal nucleus caudalis, the primary receptive field for painful stimulation to the head. We conclude that these light-evoked vocalizations and the distinct pattern of brain activation in neonatal mice are consistent with a melanopsin-dependent neural pathway involved in processing light as an aversive but not acutely painful stimulus.


Asunto(s)
Luz , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/metabolismo , Vocalización Animal/fisiología , Amígdala del Cerebelo/metabolismo , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones , Estimulación Luminosa , Proteínas Proto-Oncogénicas c-fos/metabolismo , Tálamo/metabolismo , Ganglio del Trigémino/metabolismo , Visión Ocular/fisiología
7.
J Neurosci ; 31(35): 12663-73, 2011 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-21880927

RESUMEN

Dopaminergic amacrine (DA) cells play multiple and important roles in retinal function. Neurotrophins are known to modulate the number and morphology of DA cells, but the underlying regulatory mechanisms are unclear. Here, we investigate how neurotrophin-3 (NT-3) regulates DA cell density in the mouse retina. We demonstrate that overexpression of NT-3 upregulates DA cell number and leads to a consequent increase in the density of DA cell dendrites. To examine the mechanisms of DA cell density increase, we further investigate the effect of NT-3 overexpression on retinal apoptosis and mitosis during development. We find that NT-3 does not affect the well known wave of retinal cell apoptosis that normally occurs during the first 2 weeks after birth. Instead, overexpression of NT-3 promotes additional mitosis of DA cells at postnatal day 4, but does not affect cell mitosis before birth, the peak period of amacrine cell genesis in wild-type retinas. We next show that retinal explants cultured from birth to day 7 without extra NT-3 produced by lens exhibit similar number of DA cells as in wild type, further supporting the notion that postnatal overexpression of lens-derived NT-3 affects DA cell number. Moreover, the additional mitosis after birth in NT-3-overexpressing mice does not occur in calretinin-positive amacrine cells or PKC-positive rod ON bipolar cells. Thus, the NT-3-triggered wave of cell mitosis after birth is specific for the retinal DA cells.


Asunto(s)
Células Amacrinas/fisiología , Dopamina/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Neurogénesis/fisiología , Neurotrofina 3/metabolismo , Retina/citología , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Calbindina 2 , Ciclo Celular/genética , Muerte Celular , Regulación del Desarrollo de la Expresión Génica/genética , Etiquetado Corte-Fin in Situ/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/genética , Neurotrofina 3/genética , Proteína Quinasa C/metabolismo , Proteína G de Unión al Calcio S100/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
8.
J Neurosci ; 31(8): 2769-80, 2011 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-21414899

RESUMEN

Inhibitory interneurons play a critical role in coordinating the activity of neural circuits. To explore the mechanisms that direct the organization of inhibitory circuits, we analyzed the involvement of tropomyosin-related kinase B (TrkB) in the assembly and maintenance of GABAergic inhibitory synapses between Golgi and granule cells in the mouse cerebellar cortex. We show that TrkB acts directly within each cell-type to regulate synaptic differentiation. TrkB is required not only for assembly, but also maintenance of these synapses and acts, primarily, by regulating the localization of synaptic constituents. Postsynaptically, TrkB controls the localization of a scaffolding protein, gephyrin, but acts at a step subsequent to the localization of a cell adhesion molecule, Neuroligin-2. Importantly, TrkB is required for the localization of an Ig superfamily cell adhesion molecule, Contactin-1, in Golgi and granule cells and the absence of Contactin-1 also results in deficits in inhibitory synaptic development. Thus, our findings demonstrate that TrkB controls the assembly and maintenance of GABAergic synapses and suggest that TrkB functions, in part, through promoting synaptic adhesion.


Asunto(s)
Diferenciación Celular/fisiología , Corteza Cerebelosa/enzimología , Corteza Cerebelosa/crecimiento & desarrollo , Receptor trkB/fisiología , Sinapsis/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Adhesión Celular/genética , Adhesión Celular/fisiología , Diferenciación Celular/genética , Interneuronas/citología , Interneuronas/enzimología , Ratones , Ratones Noqueados , Ratones Transgénicos , Sinapsis/enzimología , Sinapsis/genética , Transmisión Sináptica/genética , Tropomiosina/fisiología
9.
Proc Natl Acad Sci U S A ; 107(40): 17374-8, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20855606

RESUMEN

Melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) form a light-sensitive system separate from rods and cones. Direct light stimulation of ipRGCs can regulate many nonimage-forming visual functions such as photoentrainment of circadian rhythms and pupil responses, and can intensify migraine headache in adults. In mice, ipRGCs are light responsive as early as the day of birth. In contrast, their eyelids do not open until 12-13 d after birth (P12-13), and light signaling from rods and cones does not begin until approximately P10. No physiological or behavioral function is established for ipRGCs in neonates before the onset of rod and cone signaling. Here we report that mouse pups as young as P6 will completely turn away from a light. Light-induced responses of ipRGCs could be readily recorded in retinas of pups younger than P9, and we found no evidence for rod- and cone-mediated visual signaling to the RGCs of these younger mice. These results confirm that negative phototaxis is evident before the onset of rod- and cone-mediated visual signaling, and well before the onset of image-forming vision. Negative phototaxis was absent in mice lacking melanopsin. We conclude that light activation of melanopsin ipRGCs is necessary and sufficient for negative phototaxis. These results strongly suggest that light activation of ipRGCs may regulate physiological functions such as sleep/wake cycles in preterm and neonatal infants.


Asunto(s)
Animales Recién Nacidos , Reacción de Prevención/fisiología , Fototransducción/fisiología , Luz , Opsinas de Bastones/metabolismo , Animales , Conducta Animal/fisiología , Humanos , Recién Nacido , Ratones , Ratones Noqueados , Estimulación Luminosa , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/genética
10.
Neuron ; 62(2): 230-41, 2009 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-19409268

RESUMEN

In the few days prior to eye-opening in mice, the excitatory drive underlying waves switches from cholinergic to glutamatergic. Here, we describe the unique synaptic and spatiotemporal properties of waves generated by the retina's glutamatergic circuits. First, knockout mice lacking vesicular glutamate transporter type 1 do not have glutamatergic waves, but continue to exhibit cholinergic waves, demonstrating that the two wave-generating circuits are linked. Second, simultaneous outside-out patch and whole-cell recordings reveal that retinal waves are accompanied by transient increases in extrasynaptic glutamate, directly demonstrating the existence of glutamate spillover during waves. Third, the initiation rate and propagation speed of retinal waves, as assayed by calcium imaging, are sensitive to pharmacological manipulations of spillover and inhibition, demonstrating a role for both signaling pathways in shaping the spatiotemporal properties of glutamatergic retinal waves.


Asunto(s)
Ácido Glutámico/metabolismo , Células Ganglionares de la Retina/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Animales , Animales Recién Nacidos , Ácido Aspártico/farmacología , Calcio/metabolismo , Dihidro-beta-Eritroidina/farmacología , Interacciones Farmacológicas , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , N-Metilaspartato/farmacología , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Antagonistas Nicotínicos/farmacología , Técnicas de Placa-Clamp/métodos , Piridazinas/farmacología , Quinoxalinas/farmacología , Células Ganglionares de la Retina/efectos de los fármacos , Sinapsis/genética , Transmisión Sináptica/efectos de los fármacos , Factores de Tiempo , Valina/análogos & derivados , Valina/farmacología , Proteína 1 de Transporte Vesicular de Glutamato/deficiencia , Proteína 1 de Transporte Vesicular de Glutamato/genética
11.
J Comp Neurol ; 514(5): 449-58, 2009 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-19350645

RESUMEN

The morphology of dendrites constrains and reflects the nature of synaptic inputs to neurons. The visual system has served as a useful model to show how visual function is determined by the arborization patterns of neuronal processes. In retina, light ON and light OFF responding ganglion cells selectively elaborate their dendritic arbors in distinct sublamina, where they receive, respectively, inputs from ON and OFF bipolar cells. During neonatal maturation, the bilaminarly distributed dendritic arbors of ON-OFF retinal ganglion cells (RGCs) are refined to more narrowly localized monolaminar structures characteristic of ON or OFF RGCs. Recently, brain-derived neurotrophic factor (BDNF) has been shown to regulate this laminar refinement, and to enhance the development of dendritic branches selectively of ON RGCs. Although other related neurotrophins are known to regulate neuronal process formation in the central nervous system, little is known about their action in maturing retina. Here, we report that overexpression of neurotrophin-3 (NT-3) in the eye accelerates RGC laminar refinement before eye opening. Furthermore, NT-3 overexpression increases dendritic branch number but reduces dendritic elongation preferentially in ON-OFF RGCs, a process that also occurs before eye opening. NT-3 overexpression does affect dendritic maturation in ON RGCs, but to a much less degree. Taken together, our results suggest that NT-3 and BDNF exhibit overlapping effects in laminar refinement but distinct RGC-cell-type specific effects in shaping dendritic arborization during postnatal development.


Asunto(s)
Dendritas/fisiología , Ojo/crecimiento & desarrollo , Neurotrofina 3/metabolismo , Células Ganglionares de la Retina/fisiología , Análisis de Varianza , Animales , Western Blotting , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dendritas/ultraestructura , Ojo/citología , Ojo/metabolismo , Inmunohistoquímica , Ratones , Ratones Transgénicos , Microscopía Confocal , Neurotrofina 3/genética , Ratas , Células Ganglionares de la Retina/citología
12.
Mol Cell Neurosci ; 38(3): 431-43, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18511296

RESUMEN

BDNF signaling through its TrkB receptor plays a pivotal role in activity-dependent refinement of synaptic connectivity of retinal ganglion cells. Additionally, studies using TrkB knockout mice have suggested that BDNF/TrkB signaling is essential for the development of photoreceptors and for synaptic communication between photoreceptors and second order retinal neurons. Thus the action of BDNF on refinement of synaptic connectivity of retinal ganglion cells could be a direct effect in the inner retina, or it could be secondary to its proposed role in rod maturation and in the formation of rod to bipolar cell synaptic transmission. To address this matter we have conditionally eliminated TrkB within the retina. We find that rod function and synaptic transmission to bipolar cells is not compromised in these conditional knockout mice. Consistent with previous work, we find that inner retina neural development is regulated by retinal BDNF/TrkB signaling. Specifically we show here also that the complexity of neuronal processes of dopaminergic cells is reduced in conditional TrkB knockout mice. We conclude that retinal BDNF/TrkB signaling has its primary role in the development of inner retinal neuronal circuits, and that this action is not a secondary effect due to the loss of visual signaling in the outer retina.


Asunto(s)
Receptor trkB/fisiología , Retina/crecimiento & desarrollo , Retina/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/deficiencia , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/metabolismo , Receptor trkB/deficiencia , Receptor trkB/genética , Segmento Externo de la Célula en Bastón/metabolismo , Segmento Externo de la Célula en Bastón/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología
13.
J Neurosci ; 27(27): 7245-55, 2007 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-17611277

RESUMEN

Glutamatergic neurotransmission requires vesicular glutamate transporters (VGLUTs) to sequester glutamate into synaptic vesicles. Generally, VGLUT1 and VGLUT2 isoforms show complementary expression in the CNS and retina. However, little is known about whether isoform-specific expression serves distinct pathways and physiological functions. Here, by examining visual functions in VGLUT1-null mice, we demonstrate that visual signaling from photoreceptors to retinal output neurons requires VGLUT1. However, photoentrainment and pupillary light responses are preserved. We provide evidence that melanopsin-containing, intrinsically photosensitive retinal ganglion cells (RGCs), signaling via VGLUT2 pathways, support these non-image-forming functions. We conclude that VGLUT1 is essential for transmitting visual signals from photoreceptors to second- and third-order neurons, but VGLUT1 is not necessary for intrinsic visual functions. Furthermore, melanopsin and VGLUT2 expression in a subset of RGCs immediately after birth strongly supports the idea that intrinsic vision can function well before rod- and cone-mediated signaling has matured.


Asunto(s)
Células Fotorreceptoras/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Visión Ocular/fisiología , Animales , Potenciales Evocados Visuales/fisiología , Ratones , Ratones Noqueados , Estimulación Luminosa/métodos , Isoformas de Proteínas/fisiología , Ratas , Ratas Long-Evans , Células Ganglionares de la Retina/fisiología
14.
J Neurosci ; 27(27): 7256-67, 2007 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-17611278

RESUMEN

Sensory experience refines neuronal structure and functionality. The visual system has proved to be a productive model system to study this plasticity. In the neonatal retina, the dendritic arbors of a large proportion of ganglion cells are diffuse in the inner plexiform layer. With maturation, many of these arbors become monolaminated. Visual deprivation suppresses this remodeling. Little is known of the molecular mechanisms controlling maturational and experience-dependent refinement. Here, we tested the hypothesis that brain-derived neurotrophic factor (BDNF), which is known to regulate dendritic branching and synaptic function in the brain, modulates the developmental and visual experience-dependent refinement of retinal ganglion cells. We used a transgenic mouse line, in which a small number of ganglion cells were labeled with yellow fluorescence protein, to delineate their dendritic structure in vivo. We found that transgenic overexpression of BDNF accelerated the laminar refinement of ganglion cell dendrites, whereas decreased TrkB expression or retina-specific deletion of TrkB, the cognate receptor for BDNF, retarded it. BDNF-TrkB signaling regulated the maturational formation of new branches in ON but not the bilaminated ON-OFF ganglion cells. Furthermore, BDNF overexpression overrides the requirement for visual inputs to stimulate laminar refinement and dendritic branching of ganglion cells. These experiments reveal a previously unrecognized action of BDNF and TrkB in controlling cell-specific, experience-dependent remodeling of neuronal structures in the visual system.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Receptor trkB/fisiología , Retina/crecimiento & desarrollo , Retina/metabolismo , Vías Visuales/crecimiento & desarrollo , Vías Visuales/metabolismo , Factores de Edad , Animales , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/genética , Humanos , Ratones , Ratones Transgénicos , Ratas , Receptor trkB/biosíntesis , Receptor trkB/genética , Retina/fisiología , Privación Sensorial/fisiología , Visión Ocular/fisiología , Vías Visuales/fisiología
15.
J Neurosci ; 26(46): 11857-69, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17108159

RESUMEN

Parallel ON and OFF pathways conduct visual signals from bipolar cells in the retina to higher centers in the brain. ON responses are thought to originate by exclusive use of metabotropic glutamate receptor 6 (mGluR6) expressed in retinal ON bipolar cells. Paradoxically, we find ON responses in retinal ganglion cells of mGluR6-null mice, but they occur at long latency. The long-latency ON responses are not blocked by metabotropic glutamate or cholinergic receptor antagonists and are not produced by activation of receptive field surrounds. We show that these longer-latency ON responses are initiated in the OFF pathways. Our results expose a previously unrecognized intrinsic property of OFF retinal pathways that generates responses to light onset. In mGluR6-null mice, long-latency ON responses are observed in the visual cortex, indicating that they can be conducted reliably to higher visual areas. In wild-type (WT) mice, APB (DL-2-amino-4-phosphonobutyric acid), an mGluR6 agonist, blocks normal, short-latency ON responses but unmasks longer-latency ones. We find that these potentially confusing ON responses in the OFF pathway are actively suppressed in WT mice via two pharmacologically separable retinal circuits that are activated by the ON system in the retina. Consequently, we propose that a major function of the signaling of the ON pathway to the OFF pathway is suppression of these mistimed, and therefore inappropriate, light-evoked responses.


Asunto(s)
Inhibición Neural/fisiología , Neuronas/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Retina/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Receptores de Glutamato Metabotrópico/genética , Retina/efectos de los fármacos , Células Bipolares de la Retina/efectos de los fármacos , Células Bipolares de la Retina/fisiología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Corteza Visual/efectos de los fármacos , Vías Visuales/efectos de los fármacos
16.
Neuron ; 48(5): 797-809, 2005 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-16337917

RESUMEN

The visual cortex is organized into retinotopic maps that preserve an orderly representation of the visual world, achieved by topographically precise inputs from the lateral geniculate nucleus. We show here that geniculocortical mapping is imprecise when the waves of spontaneous activity in the retina during the first postnatal week are disrupted genetically. This anatomical mapping defect is present by postnatal day 8 and has functional consequences, as revealed by optical imaging and microelectrode recording in adults. Pharmacological disruption of these retinal waves during the first week phenocopies the mapping defect, confirming both the site and the timing of the disruption in neural activity responsible for the defect. Analysis shows that the geniculocortical miswiring is not a trivial or necessary consequence of the retinogeniculate defect. Our findings demonstrate that disrupting early spontaneous activity in the eye alters thalamic connections to the cortex.


Asunto(s)
Animales Recién Nacidos/fisiología , Mapeo Encefálico , Retina/fisiología , Corteza Visual/fisiología , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Cuerpos Geniculados/fisiología , Ratones , Ratones Noqueados , Neuronas Aferentes/fisiología , Agonistas Nicotínicos/farmacología , Piridinas/farmacología , Receptores Nicotínicos/deficiencia , Receptores Nicotínicos/fisiología , Retina/efectos de los fármacos , Transmisión Sináptica/fisiología , Factores de Tiempo , Corteza Visual/crecimiento & desarrollo , Campos Visuales/fisiología
17.
Vis Neurosci ; 22(3): 263-74, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16079002

RESUMEN

Calcium ion (Ca(2+)) signaling has been widely implicated in developmental events in the retina, but little is known about the specific mechanisms utilized by developing neurons to decrease intracellular Ca(2+). Using immunocytochemistry, we determined the expression profiles of all known isoforms of a key Ca(2+) transporter, the plasma membrane Ca(2+) ATPase (PMCA), in the rat retina. During the first postnatal week, the four PMCA isoforms were expressed in patterns that differed from their expression in the adult retina. At birth, PMCA1 was found in the ventricular zone and nascent cell processes in the distal retina as well as in ganglion and amacrine cells. After the first postnatal week, PMCA1 became restricted to photoreceptors and cone bipolar cells. By P10 (by postnatal day 10), most inner retinal PMCA consisted of PMCA2 and PMCA3. Prominent PMCA4 expression appeared after the first postnatal week and was confined primarily to the ON sublamina of the inner plexiform layer (IPL). The four PMCA isoforms could play distinct functional roles in the development of the mammalian retina even before synaptic circuits are established. Their expression patterns are consistent with the hypothesis that inner and outer retinal neurons have different Ca(2+) handling needs.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Neuronas/enzimología , Retina/citología , Retina/crecimiento & desarrollo , Factores de Edad , Sistemas de Transporte de Aminoácidos/metabolismo , Animales , Animales Recién Nacidos , ATPasas Transportadoras de Calcio/clasificación , Proteínas de Transporte de Catión/clasificación , Colina O-Acetiltransferasa/metabolismo , Diagnóstico por Imagen/métodos , Glutamato Descarboxilasa/metabolismo , Inmunohistoquímica/métodos , Isoenzimas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática , Ratas , Ratas Long-Evans , Tirosina 3-Monooxigenasa/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores , Proteínas de Transporte Vesicular/metabolismo
18.
Nat Neurosci ; 8(8): 1022-7, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16025107

RESUMEN

In mammals, retinal ganglion cell (RGC) projections initially intermingle and then segregate into a stereotyped pattern of eye-specific layers in the dorsal lateral geniculate nucleus (dLGN). Here we found that in mice deficient for ephrin-A2, ephrin-A3 and ephrin-A5, eye-specific inputs segregated but the shape and location of eye-specific layers were profoundly disrupted. In contrast, mice that lacked correlated retinal activity did not segregate eye-specific inputs. Inhibition of correlated neural activity in ephrin mutants led to overlapping retinal projections that were located in inappropriate regions of the dLGN. Thus, ephrin-As and neural activity act together to control patterning of eye-specific retinogeniculate layers.


Asunto(s)
Tipificación del Cuerpo/fisiología , Efrina-A2/fisiología , Efrina-A3/fisiología , Efrina-A5/fisiología , Cuerpos Geniculados/fisiología , Células Ganglionares de la Retina/fisiología , Transmisión Sináptica/fisiología , Animales , Mapeo Encefálico , Efrina-A2/deficiencia , Efrina-A3/deficiencia , Efrina-A5/deficiencia , Ratones , Ratones Noqueados , Receptor EphA2/deficiencia , Receptor EphA3/deficiencia , Receptor EphA5/deficiencia , Vías Visuales/fisiología
19.
Vis Neurosci ; 21(4): 545-50, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15579220

RESUMEN

Synaptically localized calcium channels shape the timecourse of synaptic release, are a prominent site for neuromodulation, and have been implicated in genetic disease. In retina, it is well established that L-type calcium channels play a major role in mediating release of glutamate from the photoreceptors and bipolar cells. However, little is known about which calcium channels are coupled to synaptic exocytosis of glycine, which is primarily released by amacrine cells. A recent report indicates that glycine release from spiking AII amacrine cells relies exclusively upon L-type calcium channels. To identify calcium channel types controlling neurotransmitter release from the population of glycinergic neurons that drive retinal ganglion cells, we recorded electrical and potassium evoked inhibitory synaptic currents (IPSCs) from these postsynaptic neurons in retinal slices from tiger salamanders. The L-channel antagonist nifedipine strongly inhibited release and FPL64176, an L-channel agonist, greatly enhanced it, indicating a significant role for L-channels. omega-Conotoxin MVIIC, an N/P/Q-channel antagonist, strongly inhibited release, indicating an important role for non-L channels. While the P/Q-channel blocker omega-Aga IVA produced only small effects, the N-channel blocker omega-conotoxin GVIA strongly inhibited release. Hence, N-type and L-type calcium channels appear to play major roles, overall, in mediating synaptic release of glycine onto retinal ganglion cells.


Asunto(s)
Ambystoma/fisiología , Canales de Calcio Tipo L/fisiología , Canales de Calcio Tipo N/fisiología , Glicina/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Conductividad Eléctrica , Estimulación Eléctrica , Técnicas In Vitro , Inhibición Neural/fisiología , Neurotransmisores/metabolismo , Potasio/farmacología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
20.
J Comp Neurol ; 477(4): 386-98, 2004 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-15329888

RESUMEN

Synaptic transmission from glutamatergic neurons requires vesicular glutamate transporters (VGLUTs) to concentrate cytosolic glutamate in synaptic vesicles. In retina, glutamatergic photoreceptors and bipolar cells exclusively express the VGLUT1 isoform, whereas ganglion cells express VGLUT2. Surprisingly, the recently identified VGLUT3 isoform was found in presumed amacrine cells, generally considered to be inhibitory interneurons. To investigate the synaptic machinery and conceivable secondary neurotransmitter composition of VGLUT3 cells, and to determine a potential functional role, we further investigated these putative glutamatergic amacrine cells in adult and developing rodent retina. Reverse transcriptase-PCR substantiated VGLUT3 expression in mouse retina. VGLUT3 cells did not immunostain for ganglion or bipolar cell markers, providing evidence that they are amacrine cells. VGLUT3 colocalized with synaptic vesicle markers, and electron microscopy showed that VGLUT3 immunostained synaptic vesicles. VGLUT3 cells were not immunoreactive for amacrine cell markers gamma-aminobutyric acid, choline acetyltransferase, calretinin, or tyrosine hydroxylase, although they immunostain for glycine. VGLUT3 processes made synaptic contact with ganglion cell dendrites, suggesting input onto these cells. VGLUT3 immunostaining was closely associated with the metabotropic glutamate receptor 4, which is consistent with glutamatergic synaptic exocytosis by these cells. In the maturing mouse retina, Western blots showed VGLUT3 expression at postnatal day 7/8 (P7/8). VGLUT3 immunostaining in retinal sections was first observed at P8, achieving an adult pattern at P12. Thus, VGLUT3 function commences around the same time as VGLUT1-mediated glutamatergic transmission from bipolar cells. Furthermore, a subset of VGLUT3 cells expressed the circadian clock gene period 1, implicating VGLUT3 cells as part of the light-entrainable retina-based circadian system.


Asunto(s)
Células Amacrinas/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/biosíntesis , Ácido Glutámico/metabolismo , Células Amacrinas/crecimiento & desarrollo , Animales , Western Blotting , Ritmo Circadiano , Ratones , Microscopía Confocal , Neurotransmisores/metabolismo , Terminales Presinápticos/metabolismo , Isoformas de Proteínas/biosíntesis , Ratas , Ratas Long-Evans , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Transporte Vesicular de Glutamato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...