Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(6): 2312-2317, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30674678

RESUMEN

Adaptive immune response is part of the dynamic changes that accompany motoneuron loss in amyotrophic lateral sclerosis (ALS). CD4+ T cells that regulate a protective immunity during the neurodegenerative process have received the most attention. CD8+ T cells are also observed in the spinal cord of patients and ALS mice although their contribution to the disease still remains elusive. Here, we found that activated CD8+ T lymphocytes infiltrate the central nervous system (CNS) of a mouse model of ALS at the symptomatic stage. Selective ablation of CD8+ T cells in mice expressing the ALS-associated superoxide dismutase-1 (SOD1)G93A mutant decreased spinal motoneuron loss. Using motoneuron-CD8+ T cell coculture systems, we found that mutant SOD1-expressing CD8+ T lymphocytes selectively kill motoneurons. This cytotoxicity activity requires the recognition of the peptide-MHC-I complex (where MHC-I represents major histocompatibility complex class I). Measurement of interaction strength by atomic force microscopy-based single-cell force spectroscopy demonstrated a specific MHC-I-dependent interaction between motoneuron and SOD1G93A CD8+ T cells. Activated mutant SOD1 CD8+ T cells produce interferon-γ, which elicits the expression of the MHC-I complex in motoneurons and exerts their cytotoxic function through Fas and granzyme pathways. In addition, analysis of the clonal diversity of CD8+ T cells in the periphery and CNS of ALS mice identified an antigen-restricted repertoire of their T cell receptor in the CNS. Our results suggest that self-directed immune response takes place during the course of the disease, contributing to the selective elimination of a subset of motoneurons in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Expresión Génica , Neuronas Motoras/metabolismo , Mutación , Superóxido Dismutasa-1/genética , Linfocitos T Citotóxicos/metabolismo , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Comunicación Celular/inmunología , Muerte Celular , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Granzimas/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Transgénicos , Neuronas Motoras/inmunología , Fenotipo , Índice de Severidad de la Enfermedad , Médula Espinal/citología , Linfocitos T Citotóxicos/inmunología , Receptor fas/metabolismo
2.
Cell Rep ; 25(9): 2484-2496.e9, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30485814

RESUMEN

Although accumulating data indicate that increased α-synuclein expression is crucial for Parkinson disease (PD), mechanisms regulating the transcription of its gene, SNCA, are largely unknown. Here, we describe a pathway regulating α-synuclein expression. Our data show that ZSCAN21 stimulates SNCA transcription in neuronal cells and that TRIM41 is an E3 ubiquitin ligase for ZSCAN21. In contrast, TRIM17 decreases the TRIM41-mediated degradation of ZSCAN21. Silencing of ZSCAN21 and TRIM17 consistently reduces SNCA expression, whereas TRIM41 knockdown increases it. The mRNA levels of TRIM17, ZSCAN21, and SNCA are simultaneously increased in the midbrains of mice following MPTP treatment. In addition, rare genetic variants in ZSCAN21, TRIM17, and TRIM41 genes occur in patients with familial forms of PD. Expression of variants in ZSCAN21 and TRIM41 genes results in the stabilization of the ZSCAN21 protein. Our data thus suggest that deregulation of the TRIM17/TRIM41/ZSCAN21 pathway may be involved in the pathogenesis of PD.


Asunto(s)
Proteínas Portadoras/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , alfa-Sinucleína/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Femenino , Regulación de la Expresión Génica , Humanos , Factores de Transcripción de Tipo Kruppel/química , Masculino , Ratones Endogámicos C57BL , Mutación/genética , Proteínas Nucleares/química , Linaje , Unión Proteica , Proteolisis , Transcripción Genética , Proteínas de Motivos Tripartitos , Ubiquitinación , alfa-Sinucleína/genética
3.
Mol Neurobiol ; 55(10): 7669-7676, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29435916

RESUMEN

Glutamate-induced excitotoxicity is considered as one of the major pathophysiological factors of motoneuron death in amyotrophic lateral sclerosis and other motoneuron diseases. In order to expand our knowledge on mechanisms of glutamate-induced excitotoxicity, the present study proposes to determine the metabolic consequences of glutamate and astrocytes in primary enriched motoneuron culture. Using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS), we showed that the presence of astrocytes and glutamate profoundly modified the metabolic profile of motoneurons. Our study highlights for the first time that crosstalk between astrocytes and enriched motoneuron culture induced alterations in phenylalanine, tryptophan, purine, arginine, proline, aspartate, and glutamate metabolism in motoneurons. We observed that astrocytes modulate the sensitivity of motoneurons to glutamate, since metabolites altered by glutamate in motoneurons cultured alone were different (except 5-hydroxylysine) from those altered in co-cultured motoneurons. Our findings provide new insight into the metabolic alterations associated to astrocytes and glutamate in motoneurons and provide opportunities to identify novel therapeutic targets.


Asunto(s)
Ácido Glutámico/toxicidad , Neuronas Motoras/metabolismo , Aminoácidos/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Técnicas de Cocultivo , Glutatión/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Metaboloma/efectos de los fármacos , Ratones Endogámicos C57BL , Neuronas Motoras/efectos de los fármacos , Análisis de Componente Principal
4.
Neurobiol Dis ; 106: 35-48, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28647557

RESUMEN

Loss-of-function mutations in the potassium-chloride cotransporter KCC3 lead to Andermann syndrome, a severe sensorimotor neuropathy characterized by areflexia, amyotrophy and locomotor abnormalities. The molecular events responsible for axonal loss remain poorly understood. Here, we establish that global or neuron-specific KCC3 loss-of-function in mice leads to early neuromuscular junction (NMJ) abnormalities and muscular atrophy that are consistent with the pre-synaptic neurotransmission defects observed in patients. KCC3 depletion does not modify chloride handling, but promotes an abnormal electrical activity among primary motoneurons and mislocalization of Na+/K+-ATPase α1 in spinal cord motoneurons. Moreover, the activity-targeting drug carbamazepine restores Na+/K+-ATPase α1 localization and reduces NMJ denervation in Slc12a6-/- mice. We here propose that abnormal motoneuron electrical activity contributes to the peripheral neuropathy observed in Andermann syndrome.


Asunto(s)
Agenesia del Cuerpo Calloso/metabolismo , Neuronas Motoras/metabolismo , Unión Neuromuscular/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo , Terminales Presinápticos/metabolismo , Simportadores/deficiencia , Transmisión Sináptica/fisiología , Agenesia del Cuerpo Calloso/tratamiento farmacológico , Agenesia del Cuerpo Calloso/patología , Animales , Carbamazepina/farmacología , Células Cultivadas , Cloruros/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/patología , Neurotransmisores/farmacología , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/patología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/patología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , Simportadores/genética , Transmisión Sináptica/efectos de los fármacos
5.
Glia ; 65(4): 592-605, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28139855

RESUMEN

The selective degeneration of motoneuron that typifies amyotrophic lateral sclerosis (ALS) implicates non-cell-autonomous effects of astrocytes. However, mechanisms underlying astrocyte-mediated neurotoxicity remain largely unknown. According to the determinant role of astrocyte metabolism in supporting neuronal function, we propose to explore the metabolic status of astrocytes exposed to ALS-associated conditions. We found a significant metabolic dysregulation including purine, pyrimidine, lysine, and glycerophospholipid metabolism pathways in astrocytes expressing an ALS-causing mutated superoxide dismutase-1 (SOD1) when co-cultured with motoneurons. SOD1 astrocytes exposed to glutamate revealed a significant modification of the astrocyte metabolic fingerprint. More importantly, we observed that SOD1 mutation and glutamate impact the cellular shuttling of lactate between astrocytes and motoneurons with a decreased in extra- and intra-cellular lactate levels in astrocytes. Based on the emergent strategy of metabolomics, this work provides novel insight for understanding metabolic dysfunction of astrocytes in ALS conditions and opens the perspective of therapeutics targets through focusing on these metabolic pathways. GLIA 2017 GLIA 2017;65:592-605.


Asunto(s)
Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Ácido Glutámico/farmacología , Ácido Láctico/metabolismo , Neuronas Motoras/metabolismo , Superóxido Dismutasa/genética , Animales , Animales Recién Nacidos , Células Cultivadas , Técnicas de Cocultivo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Imagen por Resonancia Magnética , Redes y Vías Metabólicas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Análisis de Componente Principal , Médula Espinal/citología , Superóxido Dismutasa/metabolismo , Tritio/metabolismo
6.
Hum Mol Genet ; 24(12): 3440-56, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25765661

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that primarily affects motoneurons in the brain and spinal cord. Astrocyte and microglia activation as well as skeletal muscle atrophy are also typical hallmarks of the disease. However, the functional relationship between astrocytes, microglia and skeletal muscle in the pathogenic process remains unclear. Here, we report that the tumor necrosis factor-like weak inducer of apoptosis (Tweak) and its receptor Fn14 are aberrantly expressed in spinal astrocytes and skeletal muscle of SOD1(G93A) mice. We show that Tweak induces motoneuron death, stimulates astrocytic interleukin-6 release and astrocytic proliferation in vitro. The genetic ablation of Tweak in SOD1(G93A) mice significantly reduces astrocytosis, microgliosis and ameliorates skeletal muscle atrophy. The peripheral neutralization of Tweak through antagonistic anti-Tweak antibody ameliorates muscle pathology and notably, decreases microglial activation in SOD1(G93A) mice. Unexpectedly, none of these approaches improved motor function, lifespan and motoneuron survival. Our work emphasizes the multi-systemic aspect of ALS, and suggests that a combinatorial therapy targeting multiple cell types will be instrumental to halt the neurodegenerative process.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Gliosis/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/genética , Factores de Necrosis Tumoral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Muerte Celular , Proliferación Celular , Citocina TWEAK , Modelos Animales de Enfermedad , Eliminación de Gen , Regulación de la Expresión Génica , Interleucina-6/biosíntesis , Esperanza de Vida , Ratones , Ratones Noqueados , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Placa Motora/genética , Placa Motora/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación , Receptores de Superficie Celular/metabolismo , Receptores del Factor de Necrosis Tumoral/genética , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal , Médula Espinal/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Receptor de TWEAK , Factores de Necrosis Tumoral/metabolismo , Regulación hacia Arriba
7.
Front Neurosci ; 8: 271, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25221469

RESUMEN

Spinal muscular atrophy (SMA) is the most common genetic disease causing infant death, due to an extended loss of motoneurons. This neuromuscular disorder results from deletions and/or mutations within the Survival Motor Neuron 1 (SMN1) gene, leading to a pathological decreased expression of functional full-length SMN protein. Emerging studies suggest that the small GTPase RhoA and its major downstream effector Rho kinase (ROCK), which both play an instrumental role in cytoskeleton organization, contribute to the pathology of motoneuron diseases. Indeed, an enhanced activation of RhoA and ROCK has been reported in the spinal cord of an SMA mouse model. Moreover, the treatment of SMA mice with ROCK inhibitors leads to an increased lifespan as well as improved skeletal muscle and neuromuscular junction pathology, without preventing motoneuron degeneration. Although motoneurons are the primary target in SMA, an increasing number of reports show that other cell types inside and outside the central nervous system contribute to SMA pathogenesis. As administration of ROCK inhibitors to SMA mice was systemic, the improvement in survival and phenotype could therefore be attributed to specific effects on motoneurons and/or on other non-neuronal cell types. In the present review, we will present the various roles of the RhoA/ROCK pathway in several SMA cellular targets including neurons, myoblasts, glial cells, cardiomyocytes and pancreatic cells as well as discuss how ROCK inhibition may ameliorate their health and function. It is most likely a concerted influence of ROCK modulation on all these cell types that ultimately lead to the observed benefits of pharmacological ROCK inhibition in SMA mice.

8.
EMBO Rep ; 15(5): 540-7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24668263

RESUMEN

A receptor-ligand interaction can evoke a broad range of biological activities in different cell types depending on receptor identity and cell type-specific post-receptor signaling intermediates. Here, we show that the TNF family member LIGHT, known to act as a death-triggering factor in motoneurons through LT-ßR, can also promote axon outgrowth and branching in motoneurons through the same receptor. LIGHT-induced axonal elongation and branching require ERK and caspase-9 pathways. This distinct response involves a compartment-specific activation of LIGHT signals, with somatic activation-inducing death, while axonal stimulation promotes axon elongation and branching in motoneurons. Following peripheral nerve damage, LIGHT increases at the lesion site through expression by invading B lymphocytes, and genetic deletion of Light significantly delays functional recovery. We propose that a central and peripheral activation of the LIGHT pathway elicits different functional responses in motoneurons.


Asunto(s)
Axones/fisiología , Neuronas Motoras/metabolismo , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Animales , Linfocitos B/inmunología , Butadienos/farmacología , Caspasa 9/metabolismo , Inhibidores de Caspasas/farmacología , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Flavonoides/farmacología , Receptor beta de Linfotoxina/antagonistas & inhibidores , Receptor beta de Linfotoxina/metabolismo , Ratones , Ratones Noqueados , Nitrilos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Nervio Ciático/lesiones , Nervio Ciático/patología , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...