Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 292, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459109

RESUMEN

Human cytomegalovirus (HCMV) is an opportunistic pathogen causing severe diseases in immunosuppressed individuals. To replicate its double-stranded DNA genome, HCMV induces profound changes in cellular homeostasis that may resemble senescence. However, it remains to be determined whether HCMV-induced senescence contributes to organ-specific pathogenesis. Here, we show a direct cytopathic effect of HCMV on primary renal proximal tubular epithelial cells (RPTECs), a natural setting of HCMV disease. We find that RPTECs are fully permissive for HCMV replication, which endows them with an inflammatory gene signature resembling the senescence-associated secretory phenotype (SASP), as confirmed by the presence of the recently established SenMayo gene set, which is not observed in retina-derived epithelial (ARPE-19) cells. Although HCMV-induced senescence is not cell-type specific, as it can be observed in both RPTECs and human fibroblasts (HFFs), only infected RPTECs show downregulation of LAMINB1 and KI67 mRNAs, and enhanced secretion of IL-6 and IL-8, which are well-established hallmarks of senescence. Finally, HCMV-infected RPTECs have the ability to trigger a senescence/inflammatory loop in an IL-6-dependent manner, leading to the development of a similar senescence/inflammatory phenotype in neighboring uninfected cells. Overall, our findings raise the intriguing possibility that this unique inflammatory loop contributes to HCMV-related pathogenesis in the kidney.


Asunto(s)
Infecciones por Citomegalovirus , Interleucina-6 , Humanos , Interleucina-6/genética , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/patología , Citomegalovirus/genética , Células Epiteliales/patología , ADN
2.
Biomedicines ; 11(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37509516

RESUMEN

Diacylglycerol kinases (DGKs) play dual roles in cell transformation and immunosurveillance. According to cancer expression databases, acute myeloid leukemia (AML) exhibits significant overexpression of multiple DGK isoforms, including DGKA, DGKD and DGKG, without a precise correlation with specific AML subtypes. In the TGCA database, high DGKA expression negatively correlates with survival, while high DGKG expression is associated with a more favorable prognosis. DGKA and DGKG also feature different patterns of co-expressed genes. Conversely, the BeatAML and TARGET databases show that high DGKH expression is correlated with shorter survival. To assess the suitability of DGKs as therapeutic targets, we treated HL-60 and HEL cells with DGK inhibitors and compared cell growth and survival with those of untransformed lymphocytes. We observed a specific sensitivity to R59022 and R59949, two poorly selective inhibitors, which promoted cytotoxicity and cell accumulation in the S phase in both cell lines. Conversely, the DGKA-specific inhibitors CU-3 and AMB639752 showed poor efficacy. These findings underscore the pivotal and isoform-specific involvement of DGKs in AML, offering a promising pathway for the identification of potential therapeutic targets. Notably, the DGKA and DGKH isoforms emerge as relevant players in AML pathogenesis, albeit DGKA inhibition alone seems insufficient to impair AML cell viability.

3.
Cell Death Discov ; 9(1): 201, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37385999

RESUMEN

Among all cancers, colorectal cancer (CRC) is the 3rd most common and the 2nd leading cause of death worldwide. New therapeutic strategies are required to target cancer stem cells (CSCs), a subset of tumor cells highly resistant to present-day therapy and responsible for tumor relapse. CSCs display dynamic genetic and epigenetic alterations that allow quick adaptations to perturbations. Lysine-specific histone demethylase 1A (KDM1A also known as LSD1), a FAD-dependent H3K4me1/2 and H3K9me1/2 demethylase, was found to be upregulated in several tumors and associated with a poor prognosis due to its ability to maintain CSCs staminal features. Here, we explored the potential role of KDM1A targeting in CRC by characterizing the effect of KDM1A silencing in differentiated and CRC stem cells (CRC-SCs). In CRC samples, KDM1A overexpression was associated with a worse prognosis, confirming its role as an independent negative prognostic factor of CRC. Consistently, biological assays such as methylcellulose colony formation, invasion, and migration assays demonstrated a significantly decreased self-renewal potential, as well as migration and invasion potential upon KDM1A silencing. Our untargeted multi-omics approach (transcriptomic and proteomic) revealed the association of KDM1A silencing with CRC-SCs cytoskeletal and metabolism remodeling towards a differentiated phenotype, supporting the role of KDM1A in CRC cells stemness maintenance. Also, KDM1A silencing resulted in up-regulation of miR-506-3p, previously reported to play a tumor-suppressive role in CRC. Lastly, loss of KDM1A markedly reduced 53BP1 DNA repair foci, implying the involvement of KDM1A in the DNA damage response. Overall, our results indicate that KDM1A impacts CRC progression in several non-overlapping ways, and therefore it represents a promising epigenetic target to prevent tumor relapse.

4.
BioData Min ; 15(1): 23, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36175974

RESUMEN

INTRODUCTION: Bladder cancer assessment with non-invasive gene expression signatures facilitates the detection of patients at risk and surveillance of their status, bypassing the discomforts given by cystoscopy. To achieve accurate cancer estimation, analysis pipelines for gene expression data (GED) may integrate a sequence of several machine learning and bio-statistical techniques to model complex characteristics of pathological patterns. METHODS: Numerical experiments tested the combination of GED preprocessing by discretization with tree ensemble embeddings and nonlinear dimensionality reductions to categorize oncological patients comprehensively. Modeling aimed to identify tumor stage and distinguish survival outcomes in two situations: complete and partial data embedding. This latter experimental condition simulates the addition of new patients to an existing model for rapid monitoring of disease progression. Machine learning procedures were employed to identify the most relevant genes involved in patient prognosis and test the performance of preprocessed GED compared to untransformed data in predicting patient conditions. RESULTS: Data embedding paired with dimensionality reduction produced prognostic maps with well-defined clusters of patients, suitable for medical decision support. A second experiment simulated the addition of new patients to an existing model (partial data embedding): Uniform Manifold Approximation and Projection (UMAP) methodology with uniform data discretization led to better outcomes than other analyzed pipelines. Further exploration of parameter space for UMAP and t-distributed stochastic neighbor embedding (t-SNE) underlined the importance of tuning a higher number of parameters for UMAP rather than t-SNE. Moreover, two different machine learning experiments identified a group of genes valuable for partitioning patients (gene relevance analysis) and showed the higher precision obtained by preprocessed data in predicting tumor outcomes for cancer stage and survival rate (six classes prediction). CONCLUSIONS: The present investigation proposed new analysis pipelines for disease outcome modeling from bladder cancer-related biomarkers. Complete and partial data embedding experiments suggested that pipelines employing UMAP had a more accurate predictive ability, supporting the recent literature trends on this methodology. However, it was also found that several UMAP parameters influence experimental results, therefore deriving a recommendation for researchers to pay attention to this aspect of the UMAP technique. Machine learning procedures further demonstrated the effectiveness of the proposed preprocessing in predicting patients' conditions and determined a sub-group of biomarkers significant for forecasting bladder cancer prognosis.

5.
Nat Commun ; 13(1): 5191, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-36057632

RESUMEN

Epithelial-mesenchymal transition (EMT) is a complex and pivotal process involved in organogenesis and is related to several pathological processes, including cancer and fibrosis. During heart development, EMT mediates the conversion of epicardial cells into vascular smooth muscle cells and cardiac interstitial fibroblasts. Here, we show that the oncogenic transcription factor EB (TFEB) is a key regulator of EMT in epicardial cells and that its genetic overexpression in mouse epicardium is lethal due to heart defects linked to impaired EMT. TFEB specifically orchestrates the EMT-promoting function of transforming growth factor (TGF) ß, and this effect results from activated transcription of thymine-guanine-interacting factor (TGIF)1, a TGFß/Smad pathway repressor. The Tgif1 promoter is activated by TFEB, and in vitro and in vivo findings demonstrate its increased expression when Tfeb is overexpressed. Furthermore, Tfeb overexpression in vitro prevents TGFß-induced EMT, and this effect is abolished by Tgif1 silencing. Tfeb loss of function, similar to that of Tgif1, sensitizes cells to TGFß, inducing an EMT response to low doses of TGFß. Together, our findings reveal an unexpected function of TFEB in regulating EMT, which might provide insights into injured heart repair and control of cancer progression.


Asunto(s)
Transición Epitelial-Mesenquimal , Factor de Crecimiento Transformador beta , Animales , Células Cultivadas , Transición Epitelial-Mesenquimal/fisiología , Ratones , Organogénesis , Pericardio/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
6.
Front Immunol ; 13: 915963, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36131938

RESUMEN

Costimulatory molecules of the CD28 family play a crucial role in the activation of immune responses in T lymphocytes, complementing and modulating signals originating from the T-cell receptor (TCR) complex. Although distinct functional roles have been demonstrated for each family member, the specific signaling pathways differentiating ICOS- from CD28-mediated costimulation during early T-cell activation are poorly characterized. In the present study, we have performed RNA-Seq-based global transcriptome profiling of anti-CD3-treated naïve CD4+ T cells upon costimulation through either inducible costimulator (ICOS) or CD28, revealing a set of signaling pathways specifically associated with each signal. In particular, we show that CD3/ICOS costimulation plays a major role in pathways related to STAT3 function and osteoarthritis (OA), whereas the CD3/CD28 axis mainly regulates p38 MAPK signaling. Furthermore, we report the activation of distinct immunometabolic pathways, with CD3/ICOS costimulation preferentially targeting glycosaminoglycans (GAGs) and CD3/CD28 regulating mitochondrial respiratory chain and cholesterol biosynthesis. These data suggest that ICOS and CD28 costimulatory signals play distinct roles during the activation of naïve T cells by modulating distinct sets of immunological and immunometabolic genes.


Asunto(s)
Antígenos CD28 , Linfocitos T CD4-Positivos , Colesterol/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transcripción Genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
PLoS One ; 17(8): e0273036, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36001607

RESUMEN

The key role played by host-microbiota interactions on human health, disease onset and progression, and on host response to treatments has increasingly emerged in the latest decades. Indeed, dysbiosis has been associated to several human diseases such as obesity, diabetes, cancer and also neurodegenerative disease, such as Parkinson, Huntington and Alzheimer's disease (AD), although whether causative, consequence or merely an epiphenomenon is still under investigation. In the present study, we performed a metabologenomic analysis of stool samples from a mouse model of AD, the 3xTgAD. We found a significant change in the microbiota of AD mice compared to WT, with a longitudinal divergence of the F/B ratio, a parameter suggesting a gut dysbiosis. Moreover, AD mice showed a significant decrease of some amino acids, while data integration revealed a dysregulated production of desaminotyrosine (DAT) and dihydro-3-coumaric acid. Collectively, our data show a dysregulated gut microbiota associated to the onset and progression of AD, also indicating that a dysbiosis can occur prior to significant clinical signs, evidenced by early SCFA alterations, compatible with gut inflammation.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Animales , Modelos Animales de Enfermedad , Disbiosis , Microbioma Gastrointestinal/fisiología , Humanos , Ratones
8.
Microorganisms ; 10(5)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35630335

RESUMEN

Bacterial endophytes were isolated from nodules of pea and fava bean. The strains were identified and characterized for plant beneficial activities (phosphate solubilization, synthesis of indole acetic acid and siderophores) and salt tolerance. Based on these data, four strains of Rahnella aquatilis and three strains of Serratia plymuthica were selected. To shed light on the mechanisms underlying salt tolerance, the proteome of the two most performant strains (Ra4 and Sp2) grown in the presence or not of salt was characterized. The number of proteins expressed by the endophytes was higher in the presence of salt. The modulated proteome consisted of 302 (100 up-regulated, 202 down-regulated) and 323 (206 up-regulated, 117 down-regulated) proteins in Ra4 and Sp2, respectively. Overall, proteins involved in abiotic stress responses were up-regulated, while those involved in metabolism and flagellum structure were down-regulated. The main up-regulated proteins in Sp2 were thiol: disulfide interchange protein DsbA, required for the sulfur binding formation in periplasmic proteins, while in Ra4 corresponded to the soluble fraction of ABC transporters, having a role in compatible solute uptake. Our results demonstrated a conserved response to salt stress in the two taxonomically related species.

9.
Angiogenesis ; 25(4): 471-492, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35545719

RESUMEN

The dynamic integrin-mediated adhesion of endothelial cells (ECs) to the surrounding ECM is fundamental for angiogenesis both in physiological and pathological conditions, such as embryonic development and cancer progression. The dynamics of EC-to-ECM adhesions relies on the regulation of the conformational activation and trafficking of integrins. Here, we reveal that oncogenic transcription factor EB (TFEB), a known regulator of lysosomal biogenesis and metabolism, also controls a transcriptional program that influences the turnover of ECM adhesions in ECs by regulating cholesterol metabolism. We show that TFEB favors ECM adhesion turnover by promoting the transcription of genes that drive the synthesis of cholesterol, which promotes the aggregation of caveolin-1, and the caveolin-dependent endocytosis of integrin ß1. These findings suggest that TFEB might represent a novel target for the pharmacological control of pathological angiogenesis and bring new insights in the mechanism sustaining TFEB control of endocytosis.


Asunto(s)
Células Endoteliales , Integrinas , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Caveolina 1/metabolismo , Adhesión Celular/genética , Colesterol , Células Endoteliales/metabolismo , Humanos , Integrina beta1/metabolismo , Integrinas/metabolismo , Neovascularización Patológica/metabolismo
10.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163581

RESUMEN

In the last several years, accumulating evidence indicates that noncoding RNAs, especially long-noncoding RNAs (lncRNAs) and microRNAs, play essential roles in regulating angiogenesis. However, the contribution of lncRNA-mediated competing-endogenous RNA (ceRNA) activity in the control of capillary sprouting from the pre-existing ones has not been described so far. Here, by exploiting the transcriptomic profile of VEGF-A-activated endothelial cells in a consolidate three-dimensional culture system, we identified a list of lncRNAs whose expression was modified during the sprouting process. By crossing the lncRNAs with a higher expression level and the highest fold change value between unstimulated and VEGF-A-stimulated endothelial cells, we identified the unknown LINC02802 as the best candidate to take part in sprouting regulation. LINC02802 was upregulated after VEGF-A stimulation and its knockdown resulted in a significant reduction in sprouting activity. Mechanistically, we demonstrated that LINC02802 acts as a ceRNA in the post-transcriptional regulation of Mastermind-like-3 (MAML3) gene expression through a competitive binding with miR-486-5p. Taken together, these results suggest that LINC02802 plays a critical role in preventing the miR-486-5p anti-angiogenic effect and that this inhibitory effect results from the reduction in MAML3 expression.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , MicroARNs/metabolismo , Neovascularización Fisiológica , ARN Largo no Codificante/metabolismo , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genética
11.
Cancers (Basel) ; 14(3)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35159043

RESUMEN

Approximately 50% of colorectal cancer (CRC) patients still die from recurrence and metastatic disease, highlighting the need for novel therapeutic strategies. Drug repurposing is attracting increasing attention because, compared to traditional de novo drug discovery processes, it may reduce drug development periods and costs. Epidemiological and preclinical evidence support the antitumor activity of antipsychotic drugs. Herein, we dissect the mechanism of action of the typical antipsychotic spiperone in CRC. Spiperone can reduce the clonogenic potential of stem-like CRC cells (CRC-SCs) and induce cell cycle arrest and apoptosis, in both differentiated and CRC-SCs, at clinically relevant concentrations whose toxicity is negligible for non-neoplastic cells. Analysis of intracellular Ca2+ kinetics upon spiperone treatment revealed a massive phospholipase C (PLC)-dependent endoplasmic reticulum (ER) Ca2+ release, resulting in ER Ca2+ homeostasis disruption. RNA sequencing revealed unfolded protein response (UPR) activation, ER stress, and induction of apoptosis, along with IRE1-dependent decay of mRNA (RIDD) activation. Lipidomic analysis showed a significant alteration of lipid profile and, in particular, of sphingolipids. Damage to the Golgi apparatus was also observed. Our data suggest that spiperone can represent an effective drug in the treatment of CRC, and that ER stress induction, along with lipid metabolism alteration, represents effective druggable pathways in CRC.

12.
Angiogenesis ; 25(1): 113-128, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34478025

RESUMEN

Embryonic stem cells (ES) are a valuable source of endothelial cells. By co-culturing ES cells with the stromal PA6 cells, the endothelial commitment can be achieved by adding exogenous FGF2 or BMP4. In this work, the molecular pathways that direct the differentiation of ES cells toward endothelium in response to FGF2 are evaluated and compared to those activated by BMP4. To this purpose the genes expression profiles of both ES/PA6 co-cultures and of pure cultures of PA6 cells were obtained by microarray technique at different time points. The bioinformatics processing of the data indicated TGFß1 as the most represented upstream regulator in FGF2-induced endothelial commitment while WNT pathway as the most represented in BMP4-activated endothelial differentiation. Loss of function experiments were performed to validate the importance of TGFß1 and WNT6 respectively in FGF2 and BMP4-induced endothelial differentiation. The loss of TGFß1 expression significantly impaired the accomplishment of the endothelial commitment unless exogenous recombinant TGFß1 was added to the culture medium. Similarly, silencing WNT6 expression partially affected the endothelial differentiation of the ES cells upon BMP4 stimulation. Such dysfunction was recovered by the addition of recombinant WNT6 to the culture medium. The ES/PA6 co-culture system recreates an in vitro complete microenvironment in which endothelial commitment is accomplished in response to alternative signals through different mechanisms. Given the importance of WNT and TGFß1 in mediating the crosstalk between tumor and stromal cells this work adds new insights in the mechanism of tumor angiogenesis and of its possible inhibition.


Asunto(s)
Células Endoteliales , Factor 2 de Crecimiento de Fibroblastos , Factor de Crecimiento Transformador beta1/fisiología , Animales , Proteína Morfogenética Ósea 4 , Diferenciación Celular , Células Madre Embrionarias , Factor 2 de Crecimiento de Fibroblastos/farmacología , Ratones , Proteínas Proto-Oncogénicas , Células del Estroma , Factor de Crecimiento Transformador beta1/genética , Proteínas Wnt
13.
Sci Transl Med ; 13(623): eabf7036, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34878824

RESUMEN

Glioblastoma (GBM) is a fatal tumor whose aggressiveness, heterogeneity, poor blood-brain barrier penetration, and resistance to therapy highlight the need for new targets and clinical treatments. A step toward clinical translation includes the eradication of GBM tumor-initiating cells (TICs), responsible for GBM heterogeneity and relapse. By using patient-derived TICs and xenograft orthotopic models, we demonstrated that the selective lysine-specific histone demethylase 1 inhibitor DDP_38003 (LSD1i) is able to penetrate the brain parenchyma in vivo in preclinical models, is well tolerated, and exerts antitumor activity in molecularly different GBMs. LSD1 genetic targeting further strengthens the role of LSD1 in GBM TIC maintenance. GBM TIC plasticity supports their adaptation and survival under a plethora of environmental stresses, including nutrient deficiency and proteostasis perturbation. By mimicking these stresses in vitro, we found that LSD1 inhibition hampers the induction of the activating transcription factor 4 (ATF4), the master regulator of the integrated stress response (ISR). The resulting aberrant ISR sensitizes GBM TICs to stress-induced cell death, hampering tumor aggressiveness. Functionally, LSD1i interferes with LSD1 scaffolding function and prevents its interaction with CREBBP, a critical ATF4 activator. By disrupting the interaction between CREBBP and LSD1-ATF4 axis, LSD1 inhibition prevents GBM TICs from overcoming stress and sustaining GBM progression. The effectiveness of the LSD1 inhibition in preclinical models shown here places a strong rationale toward its clinical translation for GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Factor de Transcripción Activador 4/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Histona Demetilasas/metabolismo , Humanos , Recurrencia Local de Neoplasia/metabolismo , Células Madre Neoplásicas/patología
14.
Genes (Basel) ; 12(10)2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34681001

RESUMEN

Known multiple sclerosis (MS) susceptibility variants can only explain half of the disease's estimated heritability, whereas low-frequency and rare variants may partly account for the missing heritability. Thus, here we sought to determine the occurrence of rare functional variants in a large Italian MS multiplex family with five affected members. For this purpose, we combined linkage analysis and next-generation sequencing (NGS)-based whole exome and whole genome sequencing (WES and WGS, respectively). The genetic burden attributable to known common MS variants was also assessed by weighted genetic risk score (wGRS). We found a significantly higher burden of common variants in the affected family members compared to that observed among sporadic MS patients and healthy controls (HCs). We also identified 34 genes containing at least one low-frequency functional variant shared among all affected family members, showing a significant enrichment in genes involved in specific biological processes-particularly mRNA transport-or neurodegenerative diseases. Altogether, our findings point to a possible pathogenic role of different low-frequency functional MS variants belonging to shared pathways. We propose that these rare variants, together with other known common MS variants, may account for the high number of affected family members within this MS multiplex family.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Esclerosis Múltiple/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Asociación Genética , Ligamiento Genético/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/patología , Linaje , Secuenciación del Exoma , Secuenciación Completa del Genoma
15.
Biomolecules ; 11(7)2021 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-34356609

RESUMEN

The oncogenic Transcription Factor EB (TFEB), a member of MITF-TFE family, is known to be the most important regulator of the transcription of genes responsible for the control of lysosomal biogenesis and functions, autophagy, and vesicles flux. TFEB activation occurs in response to stress factors such as nutrient and growth factor deficiency, hypoxia, lysosomal stress, and mitochondrial damage. To reach the final functional status, TFEB is regulated in multimodal ways, including transcriptional rate, post-transcriptional regulation, and post-translational modifications. Post-transcriptional regulation is in part mediated by miRNAs. miRNAs have been linked to many cellular processes involved both in physiology and pathology, such as cell migration, proliferation, differentiation, and apoptosis. miRNAs also play a significant role in autophagy, which exerts a crucial role in cell behaviour during stress or survival responses. In particular, several miRNAs directly recognise TFEB transcript or indirectly regulate its function by targeting accessory molecules or enzymes involved in its post-translational modifications. Moreover, the transcriptional programs triggered by TFEB may be influenced by the miRNA-mediated regulation of TFEB targets. Finally, recent important studies indicate that the transcription of many miRNAs is regulated by TFEB itself. In this review, we describe the interplay between miRNAs with TFEB and focus on how these types of crosstalk affect TFEB activation and cellular functions.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Regulación de la Expresión Génica , MicroARNs/metabolismo , Transducción de Señal , Apoptosis , Diferenciación Celular , Movimiento Celular , Humanos
16.
Aging (Albany NY) ; 13(4): 4895-4910, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33618332

RESUMEN

We previously determined that different vitamin D metabolites can have opposite effects on C2C12 myotubes, depending on the sites of hydroxylation or doses. Specifically, 25(OH)D3 (25VD) has an anti-atrophic activity, 1,25(OH)2D3 induces atrophy, and 24,25(OH)2D3 is anti-atrophic at low concentrations and atrophic at high concentrations. This study aimed to clarify whether cholecalciferol (VD3) too, the non-hydroxylated upstream metabolite, has a direct effect on muscle cells. Assessing the effects of VD3 treatment on mouse C2C12 skeletal muscle myotubes undergoing atrophy induced by interleukin 6 (IL6), we demonstrated that VD3 has a protective action, preserving C2C12 myotubes size, likely through promoting the differentiation and fusion of residual myoblasts and by modulating the IL6-induced autophagic flux. The lack, in C2C12 myotubes, of the hydroxylase transforming VD3 in the anti-atrophic 25VD metabolite suggests that VD3 may have a direct biological activity on the skeletal muscle. Furthermore, we found that the protective action of VD3 depended on VDR, implying that VD3 too might bind to and activate VDR. However, despite the formation of VDR-RXR heterodimers, VD3 effects do not depend on RXR activity. In conclusion, VD3, in addition to its best-known metabolites, may directly impact on skeletal muscle homeostasis.


Asunto(s)
Atrofia , Colecalciferol/metabolismo , Interleucina-6/efectos adversos , Fibras Musculares Esqueléticas/fisiología , Factores Protectores , Animales , Colecalciferol/farmacología , Músculo Esquelético
17.
Haematologica ; 106(6): 1624-1635, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32467137

RESUMEN

A major challenge in the development of a gene therapy for hemophilia A (HA) is the selection of cell type- or tissue-specific promoters to ensure factor VIII (FVIII) expression without eliciting an immune response. As liver sinusoidal endothelial cells (LSECs) are the major FVIII source, understanding the transcriptional F8 regulation in these cells would help optimize the minimal F8 promoter (pF8) to efficiently drive FVIII expression. In silico analyses predicted several binding sites (BS) for the E26 transformation-specific (Ets) transcription factors Ets-1 and Ets-2 in the pF8. Reporter assays demonstrated a significant up-regulation of pF8 activity by Ets-1 or Ets-1/Est-2 combination, while Ets2 alone was ineffective. Moreover, Ets-1/Ets-2-DNA binding domain mutants (DBD) abolished promoter activation only when the Ets-1 DBD was removed, suggesting that pF8 up-regulation may occur through Ets-1/Ets-2 interaction with Ets-1 bound to DNA. pF8 carrying Ets-BS deletions unveiled two Ets-BS essential for pF8 activity and response to Ets overexpression. Lentivirus-mediated delivery of GFP or FVIII cassettes driven by the shortened promoters led to GFP expression mainly in endothelial cells in the liver and to long-term FVIII activity without inhibitor formation in HA mice. These data strongly support the potential application of these promoters in HA gene therapy.


Asunto(s)
Factor VIII , Hemofilia A , Animales , Células Endoteliales , Factor VIII/genética , Terapia Genética , Hemofilia A/genética , Hemofilia A/terapia , Lentivirus/genética , Ratones
18.
Elife ; 92020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31976858

RESUMEN

Angiogenesis requires the temporal coordination of the proliferation and the migration of endothelial cells. Here, we investigated the regulatory role of microRNAs (miRNAs) in harmonizing angiogenesis processes in a three-dimensional in vitro model. We described a microRNA network which contributes to the observed down- and upregulation of proliferative and migratory genes, respectively. Global analysis of miRNA-target gene interactions identified two sub-network modules, the first organized in upregulated miRNAs connected with downregulated target genes and the second with opposite features. miR-424-5p and miR-29a-3p were selected for the network validation. Gain- and loss-of-function approaches targeting these microRNAs impaired angiogenesis, suggesting that these modules are instrumental to the temporal coordination of endothelial migration and proliferation. Interestingly, miR-29a-3p and its targets belong to a selective biomarker that is able to identify colorectal cancer patients who are responding to anti-angiogenic treatments. Our results provide a view of higher-order interactions in angiogenesis that has potential to provide diagnostic and therapeutic insights.


Asunto(s)
Células Endoteliales , MicroARNs , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Biomarcadores de Tumor , Células Cultivadas , Neoplasias Colorrectales/tratamiento farmacológico , Células Endoteliales/citología , Células Endoteliales/fisiología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Fenotipo
19.
Cell Death Dis ; 10(12): 902, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31780644

RESUMEN

The incidence of melanoma is increasing over the years with a still poor prognosis and the lack of a cure able to guarantee an adequate survival of patients. Although the new immuno-based coupled to target therapeutic strategy is encouraging, the appearance of targeted/cross-resistance and/or side effects such as autoimmune disorders could limit its clinical use. Alternative therapeutic strategies are therefore urgently needed to efficiently kill melanoma cells. Ferroptosis induction and execution were evaluated in metastasis-derived wild-type and oncogenic BRAF melanoma cells, and the process responsible for the resistance has been dissected at molecular level. Although efficiently induced in all cells, in an oncogenic BRAF- and ER stress-independent way, most cells were resistant to ferroptosis execution. At molecular level we found that: resistant cells efficiently activate NRF2 which in turn upregulates the early ferroptotic marker CHAC1, in an ER stress-independent manner, and the aldo-keto reductases AKR1C1 ÷ 3 which degrades the 12/15-LOX-generated lipid peroxides thus resulting in ferroptotic cell death resistance. However, inhibiting AKRs activity/expression completely resensitizes resistant melanoma cells to ferroptosis execution. Finally, we found that the ferroptotic susceptibility associated with the differentiation of melanoma cells cannot be applied to metastatic-derived cells, due to the EMT-associated gene expression reprogramming process. However, we identified SCL7A11 as a valuable marker to predict the susceptibility of metastatic melanoma cells to ferroptosis. Our results identify the use of pro-ferroptotic drugs coupled to AKRs inhibitors as a new valuable strategy to efficiently kill human skin melanoma cells.


Asunto(s)
Aldo-Ceto Reductasas/metabolismo , Estrés del Retículo Endoplásmico , Ferroptosis , Melanoma/enzimología , Melanoma/patología , Aldo-Ceto Reductasas/antagonistas & inhibidores , Araquidonato 15-Lipooxigenasa/metabolismo , Biomarcadores de Tumor/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Ferroptosis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Peróxidos Lipídicos/metabolismo , Melanoma/genética , Factor 2 Relacionado con NF-E2/metabolismo , Metástasis de la Neoplasia , Oncogenes , Piperazinas/farmacología , Proteínas Proto-Oncogénicas B-raf/metabolismo , Regulación hacia Arriba/efectos de los fármacos , gamma-Glutamilciclotransferasa/metabolismo
20.
Genome Biol Evol ; 11(11): 3159-3178, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31589292

RESUMEN

Homopolymeric amino acid repeats (AARs) like polyalanine (polyA) and polyglutamine (polyQ) in some developmental proteins (DPs) regulate certain aspects of organismal morphology and behavior, suggesting an evolutionary role for AARs as developmental "tuning knobs." It is still unclear, however, whether these are occasional protein-specific phenomena or hints at the existence of a whole AAR-based regulatory system in DPs. Using novel approaches to trace their functional and evolutionary history, we find quantitative evidence supporting a generalized, combinatorial role of AARs in developmental processes with evolutionary implications. We observe nonrandom AAR distributions and combinations in HOX and other DPs, as well as in their interactomes, defining elements of a proteome-wide combinatorial functional code whereby different AARs and their combinations appear preferentially in proteins involved in the development of specific organs/systems. Such functional associations can be either static or display detectable evolutionary dynamics. These findings suggest that progressive changes in AAR occurrence/combination, by altering embryonic development, may have contributed to taxonomic divergence, leaving detectable traces in the evolutionary history of proteomes. Consistent with this hypothesis, we find that the evolutionary trajectories of the 20 AARs in eukaryotic proteomes are highly interrelated and their individual or compound dynamics can sharply mark taxonomic boundaries, or display clock-like trends, carrying overall a strong phylogenetic signal. These findings provide quantitative evidence and an interpretive framework outlining a combinatorial system of AARs whose compound dynamics mark at the same time DP functions and evolutionary transitions.


Asunto(s)
Eucariontes/genética , Evolución Molecular , Genes del Desarrollo/genética , Filogenia , Secuencias Repetitivas de Aminoácido/genética , Animales , Eucariontes/crecimiento & desarrollo , Genes Homeobox , Genoma , Humanos , Proteoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...