Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Forensic Sci ; 68(5): 1470-1483, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37203260

RESUMEN

Nearly a decade ago, fentanyl reappeared in the United States illicit drug market. In the years since, overdose deaths have continued to rise as well as the amount of fentanyl seized by law enforcement agencies. Research surrounding fentanyl production has been beneficial to regulatory actions and understanding illicit fentanyl production. In 2017, the Drug Enforcement Administration (DEA) began collecting seized fentanyl samples from throughout the United States to track purity, adulteration trends, and synthetic impurity profiles for intelligence purposes. The appearance of a specific organic impurity, phenethyl-4-anilino-N-phenethylpiperidine (phenethyl-4-ANPP) indicates a shift in fentanyl production from the traditional Siegfried and Janssen routes to the Gupta-patent route. Through a collaboration between the DEA and the US Army's Combat Capabilities Development Command Chemical Biological Center (DEVCOM CBC), the synthesis of fentanyl was investigated via six synthetic routes, and the impurity profiles were compared to those of seized samples. The synthetic impurity phenethyl-4-ANPP was reliably observed in the Gupta-patent route published in 2013, and its structure was confirmed through isolation and structure elucidation. Organic impurity profiling results for illicit fentanyl samples seized in late 2021 have indicated yet another change in processing with the appearance of the impurity ethyl-4-anilino-N-phenethylpiperidine (ethyl-4-ANPP). Through altering reagents traditionally used in the Gupta-patent route, the formation of this impurity was determined to occur through a modification of the route as originally described in the Gupta patent.


Asunto(s)
Sobredosis de Droga , Drogas Ilícitas , Estados Unidos , Humanos , Fentanilo , Contaminación de Medicamentos , Analgésicos Opioides
3.
Anal Chem ; 93(36): 12162-12169, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34473490

RESUMEN

The goal of the qNMR Summit is to take stock of the status quo and the recent developments in qNMR research and applications in a timely and accurate manner. It provides a platform for both advanced and novice qNMR practitioners to receive a well-rounded update and discuss potential qNMR-related applications and collaborations. For over a decade, scientists from academia, industry, nonprofit institutions, and governmental bodies have focused on the standardization of qNMR methodology, as well as its metrological and pharmacopeial utility. This paper reviews key content of qNMR Summits 1.0 to 4.0 and puts into perspective the outcomes and available transcripts of the October 2019 Summit 5.0, with attendees from the United States, Canada, Japan, Korea, and several European countries. Summit presentations focused on qNMR methodology in the pharmaceutical industry, advanced quantitation algorithms, and promising developments.


Asunto(s)
Tecnología , Canadá , Japón , Estándares de Referencia , Estados Unidos
4.
J Equine Vet Sci ; 68: 51-54, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31256888

RESUMEN

Horses often sustain cutaneous wounds and healing can be prolonged and difficult to treat. Compared to body wounds, limb wounds heal slower and are more likely to develop exuberant granulation tissue. Differences in healing rates and exuberant granulation tissue formation is attributed to abnormal cytokine profiles. CXCL8 and its receptor CXCR2 are involved in acute inflammation whereas CXCL10 and its receptor CXCR3 are involved in inflammation resolution. ß- arrestin-2 regulates inflammation through internalization of G-protein coupled receptors (GPCRs) including CXCR2 and CXCR3. Gene expression of these five inflammation associated proteins have not been previously identified in equine cutaneous tissue and may play a role in dysregulation of inflammation in equine limb wounds. The mRNA expression levels were measured using QuantiGene Plex Assay from cutaneous biopsies collected from surgically created wounds on the limb and thorax on days 0, 1, 2, 7, 14, and 33 from two horses. The mRNA expression levels were measured in mean fluorescent intensity and graphed. We were successful in identifying all five proteins for the first time in equine cutaneous tissue. Preliminary results suggest that there are different expression patterns for CXCL8, CXCR2 and ß-arrestin-2 between the limb and thorax but not for CXCL10 and CXCR3. Differential regulation of CXCL8, CXCR2 and ß-arrestin-2 may further explain why limb wounds heal differently than body wounds and warrants further investigation.

5.
Forensic Sci Int ; 223(1-3): 279-91, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23116634

RESUMEN

An unknown compound from a putative clandestine laboratory was analyzed by GC-MS, GC-IRD, IR (ATR), and NMR and found to be α-methyl-3,4-methylenedioxyphenylpropionamide (MMDPPA), an unusual precursor for the synthesis of 3,4-methylenedioxyamphetamine (MDA), a Schedule I controlled substance. A portion of this precursor was subjected to the Hofmann Degradation (i.e., Hofmann Rearrangement) reaction using a sodium hypochlorite solution (bleach) to produce the expected compound, MDA. When excess hypochlorite was used in the reaction, a second, unexpected, compound was formed. Use of the listed instrumentation identified the new material as 2-chloro-4,5-methylenedioxyamphetamine, a compound not previously identified in the forensic literature.

6.
J Phys Chem A ; 109(35): 7872-80, 2005 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-16834168

RESUMEN

Chemisorption of a methanol molecule onto a size-selected copper cluster ion, Cu(n)+ (n = 2-10), and subsequent reactions were investigated in a gas-beam geometry at a collision energy less than 2 eV in an apparatus based on a tandem-type mass spectrometer. Mass spectra of the product ions show that the following two reactions occur after chemisorption: dominant formation of Cu(n-1)+(H)(OH) (H(OH) formation) in the size range of 4-5 and that of Cu(n)O+ (demethanation) in the size range of 6-8 in addition to only chemisorption in the size range larger than 9. Absolute cross sections for the chemisorption, the H(OH) formation, and the demethanation processes were measured as functions of cluster size and collision energy. Optimized structures of bare copper cluster ions, reaction intermediates, and products were calculated by use of a hybrid method (B3LYP) consisting of the molecular orbital and the density functional methods. The origin of the size-dependent reactivity was explained as the structural change of cluster, two-dimensional to three-dimensional structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...