Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4665, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537157

RESUMEN

Oxygen is a key signalling component of plant biology, and whilst an oxygen-sensing mechanism was previously described in Arabidopsis thaliana, key features of the associated PLANT CYSTEINE OXIDASE (PCO) N-degron pathway and Group VII ETHYLENE RESPONSE FACTOR (ERFVII) transcription factor substrates remain untested or unknown. We demonstrate that ERFVIIs show non-autonomous activation of root hypoxia tolerance and are essential for root development and survival under oxygen limiting conditions in soil. We determine the combined effects of ERFVIIs in controlling gene expression and define genetic and environmental components required for proteasome-dependent oxygen-regulated stability of ERFVIIs through the PCO N-degron pathway. Using a plant extract, unexpected amino-terminal cysteine sulphonic acid oxidation level of ERFVIIs was observed, suggesting a requirement for additional enzymatic activity within the pathway. Our results provide a holistic understanding of the properties, functions and readouts of this oxygen-sensing mechanism defined through its role in modulating ERFVII stability.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36012613

RESUMEN

In Arabidopsis thaliana, the breaking of seed dormancy in wild type (Col-0) by ethylene at 100 µL L-1 required at least 30 h application. A mutant of the proteolytic N-degron pathway, lacking the E3 ligase PROTEOLYSIS 6 (PRT6), was investigated for its role in ethylene-triggered changes in proteomes during seed germination. Label-free quantitative proteomics was carried out on dormant wild type Col-0 and prt6 seeds treated with (+) or without (-) ethylene. After 16 h, 1737 proteins were identified, but none was significantly different in protein levels in response to ethylene. After longer ethylene treatment (30 h), 2552 proteins were identified, and 619 Differentially Expressed Proteins (DEPs) had significant differences in protein abundances between ethylene treatments and genotypes. In Col, 587 DEPs were enriched for those involved in signal perception and transduction, reserve mobilization and new material generation, which potentially contributed to seed germination. DEPs up-regulated by ethylene in Col included S-adenosylmethionine synthase 1, methionine adenosyltransferase 3 and ACC oxidase involved in ethylene synthesis and of Pyrabactin Resistance1 acting as an ABA receptor, while DEPs down-regulated by ethylene in Col included aldehyde oxidase 4 involved in ABA synthesis. In contrast, in prt6 seeds, ethylene did not result in strong proteomic changes with only 30 DEPs. Taken together, the present work demonstrates that the proteolytic N-degron pathway is essential for ethylene-mediated reprogramming of seed proteomes during germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas , Germinación/fisiología , Latencia en las Plantas , Proteolisis , Proteoma/metabolismo , Proteómica , Semillas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
4.
Plant Cell Physiol ; 63(4): 550-564, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35139224

RESUMEN

In barley, incubation of primary dormant (D1) grains on water under conditions that do not allow germination, i.e. 30°C in air and 15°C or 30°C in 5% O2, induces a secondary dormancy (D2) expressed as a loss of the ability to germinate at 15°C in air. The aim of this study was to compare the proteome of barley embryos isolated from D1 grains and D2 ones after induction of D2 at 30°C or in hypoxia at 15°C or 30°C. Total soluble proteins were analyzed by 2DE gel-based proteomics, allowing the selection of 130 differentially accumulated proteins (DAPs) among 1,575 detected spots. According to the protein abundance profiles, the DAPs were grouped into six abundance-based similarity clusters. Induction of D2 is mainly characterized by a down-accumulation of proteins belonging to cluster 3 (storage proteins, proteases, alpha-amylase inhibitors and histone deacetylase HD2) and an up-accumulation of proteins belonging to cluster 4 (1-Cys peroxiredoxin, lipoxygenase2 and caleosin). The correlation-based network analysis for each cluster highlighted central protein hub. In addition, most of genes encoding DAPs display high co-expression degree with 19 transcription factors. Finally, this work points out that similar molecular events accompany the modulation of dormancy cycling by both temperature and oxygen, including post-translational, transcriptional and epigenetic regulation.


Asunto(s)
Hordeum , Ácido Abscísico/metabolismo , Epigénesis Genética , Germinación , Hordeum/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Oxígeno/metabolismo , Latencia en las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteómica , Semillas/metabolismo , Temperatura
5.
J Integr Plant Biol ; 63(12): 2110-2122, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34542217

RESUMEN

Primary dormant seeds of Arabidopsis thaliana did not germinate in darkness at temperature higher than 10-15°C. Ethylene improved the germination of dormant wild-type (Col-0) seeds at 25°C in darkness but seeds of the mutant affected in the proteolytic N-degron pathway, proteolysis6 (prt6), were insensitive to ethylene suggesting that PRT6 was involved in dormancy release by ethylene. The substrates of the N-degron pathway, the Ethylene Response Factors from group VII (HRE1, HRE2, RAP2.2, RAP2.3, and RAP2.12), were identified to be involved in this insensitivity with an increased germination in prt6 rap2.2 rap2.3 rap2.12 rather than in prt6 hre1 hre2, which also indicated that the three RAPs acted downstream of PRT6, while the two HREs acted upstream of PRT6. Ethylene reduced the expression of the three RAPs in Col-0 seeds but they were maintained or induced by ethylene in prt6 seeds. The promoting effect of ethylene was associated with a down-regulation of dormancy-related genes in gibberellins (GAs) and abscisic acid (ABA) signaling, such as RGA, RGL2, and ABI5, and with a strong decrease in ABA/GA4 ratio in the presence of ethylene. In contrast, we show that the insensitivity of prt6 seeds to ethylene was mainly related to GA signaling disturbance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación , Giberelinas/metabolismo , Latencia en las Plantas/genética , Semillas/metabolismo
6.
Sci Rep ; 9(1): 4861, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30890715

RESUMEN

Temperature is the primary factor that affects seed dormancy and germination. However, the molecular mechanism that underlies its effect on dormancy alleviation remained largely unknown. In this study, we investigate hormone involvement in temperature induced germination as compared to that caused by after-ripening. Dormant (D) sunflower seeds cannot germinate at 10 °C but fully germinate at 20 °C. After-ripened seeds become non-dormant (ND), i.e. able to germinate at 10 °C. Pharmacological experiments showed the importance of abscisic acid (ABA), gibberellins (GAs) and ethylene in temperature- and after-ripening-induced germination of sunflower seeds. Hormone quantification showed that after-ripening is mediated by a decline in both ABA content and sensitivity while ABA content is increased in D seeds treated at 10 or 20 °C, suggesting that ABA decrease is not a prerequisite for temperature induced dormancy alleviation. GAs and ethylene contents were in accordance with germination potential of the three conditions (GA1 was higher in D 20 °C and ND 10 °C than in D 10 °C). Transcripts analysis showed that the major change concerns ABA and GAs metabolism genes, while ABA signalling gene expression was significantly unchanged. Moreover, another level of hormonal regulation at the subcellular localization has been revealed by immunocytolocalization study. Indeed, ABA, protein Abscisic acid-Insensitive 5 (ABI5), involved in ABA-regulated gene expression and DELLA protein RGL2, a repressor of the gibberellins signalling pathway, localized mainly in the nucleus in non-germinating seeds while they localized in the cytosol in germinating seeds. Furthermore, ACC-oxidase (ACO) protein, the key ethylene biosynthesis enzyme, was detected in the meristem only in germinating seeds. Our results reveal the importance of hormone actors trafficking in the cell and their regulation in specialized tissue such as the meristem in dormancy alleviation and germination.


Asunto(s)
Helianthus/crecimiento & desarrollo , Latencia en las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/crecimiento & desarrollo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Germinación/genética , Giberelinas/metabolismo , Giberelinas/farmacología , Helianthus/metabolismo , Latencia en las Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/genética , Semillas/metabolismo , Transducción de Señal/efectos de los fármacos , Temperatura
7.
J Exp Bot ; 70(6): 1815-1827, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30861072

RESUMEN

Ethanol fermentation is considered as one of the main metabolic adaptations to ensure energy production in higher plants under anaerobic conditions. Following this pathway, pyruvate is decarboxylated and reduced to ethanol with the concomitant oxidation of NADH to NAD+. Despite its acknowledgement as an essential metabolic strategy, the conservation of this pathway and its regulation throughout plant evolution have not been assessed so far. To address this question, we compared ethanol fermentation in species representing subsequent steps in plant evolution and related it to the structural features and transcriptional regulation of the two enzymes involved: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). We observed that, despite the conserved ability to produce ethanol upon hypoxia in distant phyla, transcriptional regulation of the enzymes involved is not conserved in ancient plant lineages, whose ADH homologues do not share structural features distinctive for acetaldehyde/ethanol-processing enzymes. Moreover, Arabidopsis mutants devoid of ADH expression exhibited enhanced PDC activity and retained substantial ethanol production under hypoxic conditions. Therefore, we concluded that, whereas ethanol production is a highly conserved adaptation to low oxygen, its catalysis and regulation in land plants probably involve components that will be identified in the future.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Evolución Biológica , Embryophyta/metabolismo , Etanol/metabolismo , Fermentación , Piruvato Descarboxilasa/metabolismo , Embryophyta/enzimología
8.
Int J Mol Sci ; 19(11)2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30428533

RESUMEN

Dormant Arabidopsis (Arabidopsis thaliana) seeds do not germinate easily at temperatures higher than 10⁻15 °C. Using mutants affected in ethylene signaling (etr1, ein2 and ein4) and in the N-end-rule pathway of the proteolysis (prt6 and ate1-ate2) we have investigated the effects of cold and ethylene on dormancy alleviation. Ethylene (10⁻100 ppm) and 2⁻4 days chilling (4 °C) strongly stimulate the germination of wild type (Col-0) seeds at 25 °C. Two to four days of chilling promote the germination at 25 °C of all the mutants suggesting that release of dormancy by cold did not require ethylene and did not require the N-end-rule pathway. One mutant (etr1) that did not respond to ethylene did not respond to GA3 either. Mutants affected in the N-end rule (prt6 and ate1-ate2) did not respond to ethylene indicating that also this pathway is required for dormancy alleviation by ethylene; they germinated after chilling and in the presence of GA3. Cold can activate the ethylene signaling pathway since it induced an accumulation of ETR1, EINI4, and EIN2 transcripts, the expression of which was not affected by ethylene and GA3. Both cold followed by 10 h at 25 °C and ethylene downregulated the expression of PRT6, ATE1, ATE2, and of ABI5 involved in ABA signaling as compared to dormant seeds incubated at 25 °C. In opposite, the expression of RGA, GAI, and RGL2 encoding three DELLAs was induced at 4 °C but downregulated in the presence of ethylene.


Asunto(s)
Arabidopsis/metabolismo , Semillas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Frío , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Germinación/efectos de los fármacos , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Semillas/genética , Temperatura
10.
Int J Mol Sci ; 19(8)2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30127315

RESUMEN

Dormancy is an adaptive trait that blocks seed germination until the environmental conditions become favorable for subsequent vegetative plant growth. Seed dormancy is defined as the inability to germinate in favorable conditions. Dormancy is alleviated during after-ripening, a dry storage period, during which dormant (D) seeds unable to germinate become non-dormant (ND), able to germinate in a wide range of environmental conditions. The treatment of dormant seeds with ethylene (D/ET) promotes seed germination, and abscisic acid (ABA) treatment reduces non-dormant (ND/ABA) seed germination in sunflowers (Helianthus annuus). Metabolomic and transcriptomic studies have been performed during imbibition to compare germinating seeds (ND and D/ET) and low-germinating seeds (D and ND/ABA). A PCA analysis of the metabolites content showed that imbibition did not trigger a significant change during the first hours (3 and 15 h). The metabolic changes associated with germination capacity occurred at 24 h and were related to hexoses, as their content was higher in ND and D/ET and was reduced by ABA treatment. At the transcriptional level, a large number of genes were altered oppositely in germinating, compared to the low-germinating seeds. The metabolomic and transcriptomic results were integrated in the interpretation of the processes involved in germination. Our results show that ethylene treatment triggers molecular changes comparable to that of after-ripening treatment, concerning sugar metabolism and ABA signaling inhibition.


Asunto(s)
Etilenos/metabolismo , Germinación , Helianthus/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Helianthus/genética , Helianthus/metabolismo , Metaboloma , Latencia en las Plantas , Semillas/genética , Semillas/metabolismo , Transcriptoma
11.
Plant Sci ; 269: 118-125, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29606208

RESUMEN

Temperature is an important environmental factor affecting seed dormancy and germination. The mechanism by which temperature induces germination in dormant seeds is however still unclear. Proteomic study has been performed in dormant sunflower seeds during imbibition at permissive and non-permissive temperatures for germination, 20 and 10 °C, respectively. Proteome analysis showed an increase of proteins belonging to metabolism and energy from the first hours of imbibition followed by a decrease of proteins involved in protein metabolism and seed storage in germinating compared to non-germinating seeds. Proteomic study was completed by polysome and proteasome activity assessment and enzymatic profiling on several altered proteins involved in metabolism and energy. Results showed that 20 °C treatment induced the activation of both protein synthesis and degradation processes, the latter being related to proteasome activity during the germination sensu stricto, and to other degradation processes such as proteases during the post-germination. Interestingly, enzymatic profiles showed that TCA cycle and glycolysis were more active in non-germinating seeds in the phase I of the germination sensu stricto. This result suggests the regulation of central metabolism activity in germinating seeds. The control of energy production during imbibition seems to be involved in molecular networks controlling seed dormancy and germination.


Asunto(s)
Germinación , Helianthus/crecimiento & desarrollo , Helianthus/genética , Latencia en las Plantas , Proteoma , Semillas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteómica , Semillas/metabolismo , Temperatura
12.
Plant Physiol ; 174(1): 276-283, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28292857

RESUMEN

The mother plant plays an important dynamic role in the control of dormancy of her progeny seed in response to environmental signals. In order to further understand the mechanisms by which this dormancy control takes place in Arabidopsis (Arabidopsis thaliana), we conducted a forward genetic screen to isolate mutants that fail to enter dormancy in response to variation in temperature during seed set. We show that, for the first of these mutants, designated awake1, the maternal allele is required for entry into strongly dormant states and that awake1 mutants show seed phenotypes shown previously to be associated with the loss of suberin in the seed. We identify awake1 as an allele of ABCG20, an ATP-binding cassette transporter-encoding gene required for the transport of fatty acids during suberin deposition, and show that further suberin-deficient mutants have seed dormancy defects. Seed coat suberin composition is affected by temperature during seed maturation, but this response appears to be independent of ABCG20. We conclude that seed coat suberin is essential for seed dormancy imposition by low temperature and that the exclusion of oxygen and water from the seed by the suberin and tannin layers is important for dormancy imposition.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lípidos/fisiología , Latencia en las Plantas/fisiología , Transportadoras de Casetes de Unión a ATP/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Frío , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Germinación/fisiología , Mutación , Oxígeno/metabolismo , Fenotipo , Latencia en las Plantas/genética , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/metabolismo , Agua/metabolismo
13.
Plant Biotechnol J ; 14(1): 40-50, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25657015

RESUMEN

Increased tolerance of crops to low oxygen (hypoxia) during flooding is a key target for food security. In Arabidopsis thaliana (L.) Heynh., the N-end rule pathway of targeted proteolysis controls plant responses to hypoxia by regulating the stability of group VII ethylene response factor (ERFVII) transcription factors, controlled by the oxidation status of amino terminal (Nt)-cysteine (Cys). Here, we show that the barley (Hordeum vulgare L.) ERFVII BERF1 is a substrate of the N-end rule pathway in vitro. Furthermore, we show that Nt-Cys acts as a sensor for hypoxia in vivo, as the stability of the oxygen-sensor reporter protein MCGGAIL-GUS increased in waterlogged transgenic plants. Transgenic RNAi barley plants, with reduced expression of the N-end rule pathway N-recognin E3 ligase PROTEOLYSIS6 (HvPRT6), showed increased expression of hypoxia-associated genes and altered seed germination phenotypes. In addition, in response to waterlogging, transgenic plants showed sustained biomass, enhanced yield, retention of chlorophyll, and enhanced induction of hypoxia-related genes. HvPRT6 RNAi plants also showed reduced chlorophyll degradation in response to continued darkness, often associated with waterlogged conditions. Barley Targeting Induced Local Lesions IN Genomes (TILLING) lines, containing mutant alleles of HvPRT6, also showed increased expression of hypoxia-related genes and phenotypes similar to RNAi lines. We conclude that the N-end rule pathway represents an important target for plant breeding to enhance tolerance to waterlogging in barley and other cereals.


Asunto(s)
Adaptación Fisiológica , Hordeum/genética , Hordeum/fisiología , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Agua , Alelos , Secuencia de Aminoácidos , Clorofila/metabolismo , Cisteína/metabolismo , Oscuridad , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Germinación/genética , Mutación/genética , Fenotipo , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Estabilidad Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/genética , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
14.
New Phytol ; 206(4): 1450-62, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25728686

RESUMEN

Cryptochromes are widespread blue-light absorbing flavoproteins with important signaling roles. In plants they mediate de-etiolation, developmental and stress responses resulting from interaction with downstream signaling partners such as transcription factors and components of the proteasome. Recently, it has been shown that Arabidopsis cry1 activation by blue light also results in direct enzymatic conversion of molecular oxygen (O2 ) to reactive oxygen species (ROS) and hydrogen peroxide (H2 O2 ) in vitro. Here we explored whether direct enzymatic synthesis of ROS by Arabidopsis cry1 can play a physiological role in vivo. ROS formation resulting from cry1 expression was measured by fluorescence assay in insect cell cultures and in Arabidopsis protoplasts from cryptochrome mutant seedlings. Cell death was determined by colorimetric assay. We found that ROS formation results from cry1 activation and induces cell death in insect cell cultures. In plant protoplasts, cryptochrome activation results in rapid increase in ROS formation and cell death. We conclude that ROS formation by cryptochromes may indeed be of physiological relevance and could represent a novel paradigm for cryptochrome signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Evolución Biológica , Criptocromos/metabolismo , Luz , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de la radiación , Arabidopsis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Oxígeno/farmacología , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , Recombinación Genética/genética , Células Sf9 , Transducción de Señal/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
15.
Front Plant Sci ; 5: 539, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25346747

RESUMEN

Ethylene is an important component of the gaseous environment, and regulates numerous plant developmental processes including seed germination and seedling establishment. Dormancy, the inability to germinate in apparently favorable conditions, has been demonstrated to be regulated by the hormonal balance between abscisic acid (ABA) and gibberellins (GAs). Ethylene plays a key role in dormancy release in numerous species, the effective concentrations allowing the germination of dormant seeds ranging between 0.1 and 200 µL L(-1). Studies using inhibitors of ethylene biosynthesis or of ethylene action and analysis of mutant lines altered in genes involved in the ethylene signaling pathway (etr1, ein2, ain1, etr1, and erf1) demonstrate the involvement of ethylene in the regulation of germination and dormancy. Ethylene counteracts ABA effects through a regulation of ABA metabolism and signaling pathways. Moreover, ethylene insensitive mutants in Arabidopsis are more sensitive to ABA and the seeds are more dormant. Numerous data also show an interaction between ABA, GAs and ethylene metabolism and signaling pathways. It has been increasingly demonstrated that reactive oxygen species (ROS) may play a significant role in the regulation of seed germination interacting with hormonal signaling pathways. In the present review the responsiveness of seeds to ethylene will be described, and the key role of ethylene in the regulation of seed dormancy via a crosstalk between hormones and other signals will be discussed.

16.
Planta ; 240(5): 1075-95, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25115559

RESUMEN

Cotyledonary somatic embryos (SEs) of maritime pine are routinely matured for 12 weeks before being germinated and converted to plantlets. Although regeneration success is highly dependent on SEs quality, the date of harvesting is currently determined mainly on the basis of morphological features. This empirical method does not provide any accurate information about embryo quality with respect to storage compounds (proteins, carbohydrates). We first analyzed SEs matured for 10, 12 and 14 weeks by carrying out biological (dry weight, water content) and biochemical measurements (total protein and carbohydrate contents). No difference could be found between collection dates, suggesting that harvesting SEs after 12 weeks is appropriate. Cotyledonary SEs were then compared to various stages, from fresh to fully desiccated, in the development of cotyledonary zygotic embryos (ZEs). We identified profiles that were similar using hierarchical ascendant cluster analysis (HCA). Fresh and dehydrated ZEs could be distinguished, and SEs clustered with fresh ZEs. Both types of embryo exhibited similar carbohydrate and protein contents and signatures. This high level of similarity (94.5 %) was further supported by proteome profiling. Highly expressed proteins included storage, stress-related, late embryogenesis abundant and energy metabolism proteins. By comparing overexpressed proteins in developing and cotyledonary SEs or ZEs, some (23 proteins) could be identified as candidate biomarkers for the late, cotyledonary stage. This is the first report of useful generic protein markers for monitoring embryo development in maritime pine. Our results also suggest that improvements of SEs quality may be achieved if the current maturation conditions are refined.


Asunto(s)
Carbohidratos/análisis , Cotiledón/embriología , Pinus/embriología , Proteínas de Plantas/análisis , Semillas/embriología , Biomarcadores/análisis , Análisis por Conglomerados , Cotiledón/metabolismo , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Fructosa/metabolismo , Glucosa/metabolismo , Maltosa/metabolismo , Pinus/metabolismo , Proteoma/análisis , Proteómica/métodos , Semillas/clasificación , Semillas/metabolismo , Sacarosa/metabolismo , Factores de Tiempo , Agua/metabolismo
17.
Physiol Plant ; 152(1): 184-201, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24460664

RESUMEN

Maritime pine somatic embryos (SEs) require a reduction in water availability (high gellan gum concentration in the maturation medium) to reach the cotyledonary stage. This key switch, reported specifically for pine species, is not yet well understood. To facilitate the use of somatic embryogenesis for mass propagation of conifers, we need a better understanding of embryo development. Comparison of both transcriptome (Illumina RNA sequencing) and proteome [two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with mass spectrometry (MS) identification] of immature SEs, cultured on either high (9G) or low (4G) gellan gum concentration, was performed, together with analysis of water content, fresh and dry mass, endogenous abscisic acid (ABA; gas chromatography-MS), soluble sugars (high-pressure liquid chromatography), starch and confocal laser microscope observations. This multiscale, integrated analysis was used to unravel early molecular and physiological events involved in SE development. Under unfavorable conditions (4G), the glycolytic pathway was enhanced, possibly in relation to cell proliferation that may be antagonistic to SE development. Under favorable conditions (9G), SEs adapted to culture constraint by activating specific protective pathways, and ABA-mediated molecular and physiological responses promoting embryo development. Our results suggest that on 9G, germin-like protein and ubiquitin-protein ligase could be used as predictive markers of SE development, whereas protein phosphatase 2C could be a biomarker for culture adaptive responses. This is the first characterization of early molecular mechanisms involved in the development of pine SEs following an increase in gellan gum concentration in the maturation medium, and it is also the first report on somatic embryogenesis in conifers combining transcriptomic and proteomic datasets.


Asunto(s)
Proteómica , Semillas/genética , Transcriptoma , Agua/metabolismo , Ácido Abscísico/metabolismo , Glicoproteínas , Pinus/genética , Pinus/crecimiento & desarrollo , Pinus/metabolismo , Proteínas de Plantas , Técnicas de Embriogénesis Somática de Plantas
18.
Plant Cell Environ ; 37(6): 1393-403, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24256416

RESUMEN

Germination of primary dormant barley grains is promoted by darkness and temperatures below 20 °C, but is strongly inhibited by blue light. Exposure under blue light at 10 °C for periods longer than five days, results in a progressive inability to germinate in the dark, considered as secondary dormancy. We demonstrate that the inhibitory effect of blue light is reinforced in hypoxia. The inhibitory effect of blue light is associated with an increase in embryo abscisic acid (ABA) content (by 3.5- to 3.8-fold) and embryo sensitivity to both ABA and hypoxia. Analysis of expression of ABA metabolism genes shows that increase in ABA mainly results in a strong increase in HvNCED1 and HvNCED2 expression, and a slight decrease in HvABA8'OH-1. Among the gibberellins (GA) metabolism genes examined, blue light decreases the expression of HvGA3ox2, involved in GA synthesis, increases that of GA2ox3 and GA2ox5, involved in GA catabolism, and reduces the GA signalling evaluated by the HvExpA11 expression. Expression of secondary dormancy is associated with maintenance of high embryo ABA content and a low HvExpA11 expression. The partial reversion of the inhibitory effect of blue light by green light also suggests that cryptochrome might be involved in this hormonal regulation.


Asunto(s)
Germinación/efectos de la radiación , Hordeum/efectos de la radiación , Oxígeno/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Giberelinas/metabolismo , Hordeum/crecimiento & desarrollo , Hordeum/metabolismo , Semillas/crecimiento & desarrollo , Semillas/efectos de la radiación , Transducción de Señal , Temperatura
19.
J Exp Bot ; 64(7): 2017-25, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23519728

RESUMEN

In barley, primary dormant grains did not germinate at 30 °C in air and at 15 °C in an atmosphere containing less than 10% O2, while they germinated easily at 15 °C in air. O2 tension in embryos measured with microsensors was 15.8% at 15 °C but only 0.3% at 30 °C. Incubation of grains at 30 °C is known to induce secondary dormancy in barley, and it was shown here that secondary dormancy was also induced by a 3 d treatment in O2 tensions lower than 10% at 15 °C. After such treatments, the grains lost their ability to germinate subsequently at 15 °C in air. During seed treatment in 5% O2, embryo abscisic acid (ABA) content decreased more slowly than in air and was not altered after transfer into air. Hypoxia did not alter the expression of ABA metabolism genes after 1 d, and induction of HvNCED2 occurred only after 3 d in hypoxia. Embryo sensitivity to ABA was similar in both primary and hypoxia-induced secondary dormant grains. Gibberellic acid (GA) metabolism genes were highly regulated and regulated earlier by the hypoxia treatment, with major changes in HvGA2ox3, HvGA3ox2 and HvGA20ox1 expression after 1 d, resulting in reduced GA signalling. Although a high temperature has an indirect effect on O2 availability, the data showed that it did not affect expression of prolyl-4-hydroxylases and that induction of secondary dormancy by hypoxia at 15 °C or by high temperature in air involved separate signalling pathways. Induction by hypoxia at 15 °C appears to be more regulated by GA and less by ABA than the induction by high temperature.


Asunto(s)
Hordeum/metabolismo , Hordeum/fisiología , Semillas/metabolismo , Semillas/fisiología , Ácido Abscísico/farmacología , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , Germinación/efectos de los fármacos , Germinación/genética , Giberelinas/farmacología , Hordeum/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Temperatura
20.
Front Plant Sci ; 4: 63, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23531630

RESUMEN

Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8'-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8'-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA