Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hum Genomics ; 18(1): 72, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937848

RESUMEN

BACKGROUND: Wastewater surveillance (WWS) acts as a vigilant sentinel system for communities, analysing sewage to protect public health by detecting outbreaks and monitoring trends in pathogens and contaminants. To achieve a thorough comprehension of present and upcoming practices and to identify challenges and opportunities for standardisation and improvement in WWS methodologies, two EU surveys were conducted targeting over 750 WWS laboratories across Europe and other regions. The first survey explored a diverse range of activities currently undertaken or planned by laboratories. The second survey specifically targeted methods and quality controls utilised for SARS-CoV-2 surveillance. RESULTS: The findings of the two surveys provide a comprehensive insight into the procedures and methodologies applied in WWS. In Europe, WWS primarily focuses on SARS-CoV-2 with 99% of the survey participants dedicated to this virus. However, the responses highlighted a lack of standardisation in the methodologies employed for monitoring SARS-CoV-2. The surveillance of other pathogens, including antimicrobial resistance, is currently fragmented and conducted by only a limited number of laboratories. Notably, these activities are anticipated to expand in the future. Survey replies emphasise the collective recognition of the need to enhance the accuracy of results in WWS practices, reflecting a shared commitment to advancing precision and effectiveness in WWS methodologies. CONCLUSIONS: These surveys identified a lack of standardised common procedures in WWS practices and the need for quality standards and reference materials to enhance the accuracy and reliability of WWS methods in the future. In addition, it is important to broaden surveillance efforts beyond SARS-CoV-2 to include other emerging pathogens and antimicrobial resistance to ensure a comprehensive approach to protecting public health.


Asunto(s)
COVID-19 , SARS-CoV-2 , Aguas Residuales , Humanos , Aguas Residuales/virología , Aguas Residuales/microbiología , SARS-CoV-2/efectos de los fármacos , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , Europa (Continente)/epidemiología , Encuestas y Cuestionarios , Aguas del Alcantarillado/virología , Aguas del Alcantarillado/microbiología , Farmacorresistencia Microbiana
2.
Microbiol Spectr ; 12(2): e0239723, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38189291

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic demonstrated the need for accurate diagnostic testing for the early detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although the pandemic has ended, accurate assays are still needed to monitor viral spread at national levels and beyond through population and wastewater surveillance. To enhance early detection, SARS-CoV-2 assays should have high diagnostic accuracy and should be validated to assure accurate results. Three distinct SARS-CoV-2 assays were evaluated with clinical samples using the VALCOR (VALidation of SARS-CORona Virus-2 assays) framework, with the TaqPath COVID-19 assay (ThermoFisher Scientific, USA) as a comparator. We evaluated clinical sensitivity, specificity, limit of detection (LOD), and overall concordance between comparator and three index Allplex SARS-CoV-2 assays (Seegene, South Korea): Allplex-SC2, Allplex-SC2Fast (Fast PCR), and Allplex-SC2FabR (SARS-CoV-2/FluA/FluB/respiratory syncytial virus). Analytical performance and LOD of index assays were assessed using a dilution series of three synthetic SARS-CoV-2 sequence reference materials (RMs). Ninety SARS-CoV-2 positives and 90 SARS-CoV-2 negatives were tested. All Allplex assays had 100.0% sensitivity (95%CI = 95.9%-100.0%). Allplex-SC2 and Allplex-SC2Fast assays had 97.8% specificity (95%CI = 92.3%-99.7%) and 98.9% overall concordance [κ = 0.978 (95%CI = 0.947-1.000)]. Allplex-SC2FabR assay showed 100.0% specificity (95%CI = 95.9%-100.0%) and 100.0% overall concordance [κ = 1.000 (95%CI = 1.000-1.000)]. LOD assessment of index assays revealed detection down to 2.61 × 102 copies/mL in clinical samples, while the analytical LOD was 9.00 × 102 copies/mL. In conclusion, the evaluation of the three Seegene Allplex SARS-CoV-2 assays showed high sensitivity and specificity and an overall good assay concordance with the comparator. The assays showed low analytical LOD using RM and even a slightly lower LOD in clinical samples. Non-overlapping target gene sequences between SARS-CoV-2 assays and RMs emphasize the need for aligning targeted sequences of diagnostic assays and RMs.IMPORTANCEThe coronavirus disease 2019 pandemic has a significant impact on global public health, economies, and societies. As shown through the first phases of the pandemic, accurate and timely diagnosis is crucial for disease control, prevention, and monitoring. Though the pandemic phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has concluded, diagnostic assays remain in demand to monitor SARS-CoV-2 at the individual patient level, regionally, and nationally, as well as to remain an infectious disease preparedness instrument to monitor any new SARS-CoV-2 dissemination across borders using population and wastewater surveillance. The anticipation by WHO and central health care policy entities such as the Center for Disease Control, EMA, and multiple national health authorities is that SARS-CoV-2 will reside as an endemic respiratory disease for years to come. The key strategic consideration is hence shifting from combating a pandemic situation with a high number of patients to instead allowing precise diagnostics of suspected patients with the intention of correct management in a low-prevalence setting.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Aguas Residuales , Sensibilidad y Especificidad , Monitoreo Epidemiológico Basado en Aguas Residuales
3.
Virol J ; 20(1): 35, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829164

RESUMEN

BACKGROUND: The COVID-19 pandemic highlighted the importance of diagnostic testing against curbing the spread of SARS-CoV-2. The urgent need and scale for diagnostic tools resulted in manufacturers of SARS-CoV-2 assays receiving emergency authorization that lacked robust analytical or clinical evaluation. As it is highly likely that testing for SARS-CoV-2 will continue to play a central role in public health, the performance characteristics of assays should be evaluated to ensure reliable diagnostic outcomes are achieved. METHODS: VALCOR or "VALidation of SARS-CORona Virus-2 assays" is a study protocol designed to set up a framework for test validation of SARS-CoV-2 virus assays. Using clinical samples collated from VALCOR, the performance of Aptima SARS-CoV-2 assay was assessed against a standard comparator assay. Diagnostic test parameters such as sensitivity, specificity and overall per cent agreement were calculated for the clinical performance of Aptima SARS-CoV-2 assay. RESULTS: A total of 180 clinical samples were tested with an addition of 40 diluted clinical specimens to determine the limit of detection. When compared to the standard comparator assay Aptima had a sensitivity of 100.0% [95% CI 95.9-100.0] and specificity of 96.7% [95% CI 90.8-99.3]. The overall percent agreement was 98.3% with an excellent Cohen's coefficient of κ = 0.967 [95% CI 0.929-1.000]. For the limit of detection, Aptima was able to detect all of the diluted clinical samples. CONCLUSION: In conclusion. validation of Aptima SARS-CoV-2 assay using clinical samples collated through the VALCOR protocol showed excellent test performance. Additionally, Aptima demonstrated high analytical sensitivity by detecting all diluted clinical samples corresponding to a low limit of detection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Técnicas de Laboratorio Clínico/métodos , Prueba de COVID-19 , Técnicas de Diagnóstico Molecular/métodos , Pandemias , Sensibilidad y Especificidad
4.
Viruses ; 15(1)2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36680246

RESUMEN

Multiple lineages of SARS-CoV-2 have been identified featuring distinct sets of genetic changes that confer to the virus higher transmissibility and ability to evade existing immunity. The continuous evolution of SARS-CoV-2 may pose challenges for current treatment options and diagnostic tools. In this study, we have first evaluated the performance of the 14 WHO-recommended real-time reverse transcription (RT)-PCR assays currently in use for the detection of SARS-CoV-2 and found that only one assay has reduced performance against Omicron. We then developed a new duplex real-time RT-PCR assay based on the amplification of two ultra-conserved elements present within the SARS-CoV-2 genome. The new duplex assay successfully detects all of the tested SARS-CoV-2 variants of concern (including Omicron sub-lineages BA.4 and BA.5) from both clinical and wastewater samples with high sensitivity and specificity. The assay also functions as a one-step droplet digital RT-PCR assay. This new assay, in addition to clinical testing, could be adopted in surveillance programs for the routine monitoring of SARS-CoV-2's presence in a population in wastewater samples. Positive results with our assay in conjunction with negative results from an Omicron-specific assay may provide timely indication of the emergence of a novel SARS-CoV-2 variant in a certain community and thereby aid public health interventions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Reversa , Aguas Residuales , COVID-19/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Prueba de COVID-19
5.
Food Control ; 140: 109117, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36193189

RESUMEN

The authorisation of genetically modified food and feed in the EU is subject to the provision of evidence of safety and of the availability of reliable analytical methods. These methods represent an essential tool for official laboratories to enforce a harmonised market control. Here the validation of droplet digital PCR (dPCR) methods has been performed for studying if the performance and acceptance parameters set by EU and other international guidelines for the analysis of genetically modified organisms (GMO) in food and feed are suitable and achievable also with such methods. The single-laboratory validation study showed that performance requirements set for GMO analysis by real time PCR can also be used to assess dPCR-based methods. Moreover, trueness and precision were assessed for both simplex and duplex formats in a multi-laboratory validation study organised according to international standards. Overall, the data on trueness, repeatability and reproducibility precision resulting from the collaborative study are satisfying the acceptance criteria for the respective parameters as stipulated in the EU and other international guidance such as the Codex Committee on Methods of Analysis and Sampling (CCMAS). For instance, the duplex droplet dPCR method for MON810 showed relative repeatability standard deviations from 1.8% to 15.7%, while the relative reproducibility standard deviation was found to be between 2.1% and 16.5% over the dynamic range studied. Moreover, the relative bias of the dPCR methods was well below 25% across the entire dynamic range. In addition, other aspects supporting the application of digital PCR for the control of GMOs on the market were experimentally assessed such as the conversion of the measurement results from copy number ratio to mass fraction, the influence of the DNA extraction step and of the ingredient content. It was found that the DNA extraction step added only a limited contribution to the variability of the measurement results under the studied conditions. The decreasing amount of the target ingredient content may decrease the level of precision of the method, although within the acceptance range of GMO performance parameters.

6.
J Clin Virol ; 152: 105191, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35640400

RESUMEN

OBJECTIVES: The aim of this study was to develop a RT-PCR assay for the specific detection of the SARS-CoV-2 Omicron Variant of Concern (VOC) as a rapid alternative to sequencing. METHODS: A RT-PCR was designed in silico and then validated using characterised clinical samples containing Omicron (both BA.1 and BA.2 lineages) and the Omicron synthetic RNA genome. As negative controls, SARS-CoV-2 positive clinical samples collected in May 2020, and synthetic RNA genomes of the isolate Wuhan Hu-1 and of the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Kappa (B.1.617.1), Iota (B.1.526), Epsilon (B.1.429) and Delta (B.1.617.2) SARS-CoV-2 VOC were used. RESULTS: Experiments performed using as templates the synthetic RNA genomes demonstrate the high specificity of the PCR-method for the SARS-CoV-2 Omicron. Despite the synthetic RNAs were used at high copy numbers, specific signal was mainly detected with the Omicron synthetic genome. Only a non-specific late signal was detected using the Alpha variant genome, but these results were considered negligible as Alpha VOC has been replaced by the Delta and it is not circulating anymore in the world. Using our method, we confirmed the presence of Omicron on clinical samples containing this variant but not of other SARS-CoV-2 lineages. The method is highly sensitive and can detect up to 1 cp of the Omicron virus per µl. CONCLUSIONS: The method presented here, in combination with other methods in use for detection of SARS-CoV-2, can be used for an early identification of Omicron.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , ARN Viral/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , Sensibilidad y Especificidad
7.
Food Control ; 133(Pt B): 108626, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35241875

RESUMEN

Nowadays the quantification of the content of genetically modified (GM) constituents in food or feed products is performed by using either quantitative real-time PCR (qPCR) or digital PCR (dPCR). The latter is increasingly used. Therefore, experimental protocols for the quantification of 52 GM events authorised in the EU have been converted into a digital format and minimum performance characteristics for dPCR methods are detailed. Because of the need to harmonise the transformation of PCR results between two different measurement scales, 50 conversion factors for Certified Reference Materials (CFCRM) have been experimentally determined by three and sometimes four independent expert laboratories. The uncertainty of each CFCRM has been estimated to express dPCR results in mass fraction with a consistent uncertainty contribution. In 38 out of 58 cases, the validated qPCR methods (for 52 event-specific and 6 taxon-specific measurements) could easily be transferred into dPCR methods by using the same oligo sequences, final oligo concentration or annealing temperatures for the dPCR procedure. Laboratories have nevertheless used different strategies to improve the resolution or to reduce the so-called rain in their dPCR outcome. Those modifications were needed for PCR procedures that could not be converted without changes into a digital format. Therefore, exclusion/quality criteria such as the maximum rate of partitions with intermediate fluorescence "rain", the minimum resolution and repeatability are suggested for dPCR methods. The CFCRM determined in this study were generally in agreement with the declared zygosity of the GM parental donor for hemizygous maize events. In a limited number of GM events the CFCRM values were significantly different when measured with different maize-specific (ZmAdh1 or hmgA) genes.

8.
Arch Public Health ; 80(1): 98, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351191

RESUMEN

BACKGROUND: Testing for SARS-CoV-2, together with vaccination, is one of the most vital strategies in curbing the current COVID-19 pandemic. The pandemic has led to an unprecedented need for diagnostic testing and the rapid emergence of an abundance of commercial assays on the market. Due to the nature of the pandemic and in the interest of health protection, many of these assays received provisional authorisation for emergency use without thorough validation. To limit false negative and false positive results, it is key to define common criteria that SARS-CoV-2 assays need to fulfil. VALCOR or "VALidation of SARS-CORona Virus-2 assays" is a protocol designed to set up a framework for test validation of SARS-CoV-2 virus assays. OBJECTIVES: VALCOR is a study protocol for the validation of assays used for confirmation of the presence of SARS-CoV-2 in patients with COVID-19 disease or the screening of carriers of SARS-CoV-2 virus by the identification of viral RNA in oropharyngeal and/or nasopharyngeal specimens or other specimens from the human respiratory tract. METHODS: The VALCOR panel of samples will contain clinical human specimens and standardised artificial specimens. The collection of clinical specimens will include nasopharyngeal or oropharyngeal specimens or other specimens from the respiratory tract obtained from COVID-19 patients and healthy carriers of SARS-CoV-2 as well as specimens from subjects not carrying SARS-CoV-2. Artificial specimens include calibrated amounts of viral RNA of SARS-CoV-2 sequences provided by established competent agencies that produce reference materials for the assessment of the limit of detection of each assay. The panel of samples are sent from a central reference laboratory (having access to biobanks of clinical specimens tested already for SARS-CoV-2 with a reference comparator assay) to participating laboratories for testing with a SARS-CoV-2 index assay that requires evaluation. DISCUSSION: VALCOR provides a harmonised and standard framework to benchmark the testing performance of SARS-CoV-2 assays that are rapidly evolving. As the pandemic incited an urgent need for testing capacity, there is a gap in the comprehensive validation of SARS-CoV-2 assays. This study will generate comprehensive validation data for assays used for the diagnosis of SARS-CoV-2 and may serve as a basis for other validation protocols.

9.
Methods ; 201: 65-73, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33812016

RESUMEN

A candidate digital PCR (dPCR)-based reference measurement procedure for quantification of human cytomegalovirus (hCMV) was evaluated in 10 viral load comparison schemes (seven external quality assessment (EQA) and three additional training schemes) organized by INSTAND e.V. over four years (between September 2014 and March 2018). Four metrology institutes participated in these schemes using the same extraction method and dPCR measurement procedure for the hCMV specific target sequence of UL54 gene. The calibration independent reference measurement procedure results from the metrology institutes were compared to the results of the clinical diagnostic laboratories applying hCMV qPCR measurement procedures calibrated to reference materials. While the criteria for the acceptable deviation from the target value interval for INSTAND's EQA schemes is from -0.8 log10 to +0.8 log10, the majority of dPCR results were between -0.2 log10 to +0.2 log10. Only 4 out of 45 results exceeded this interval with the maximum deviation of -0.542 log10. In the training schemes containing samples with lower hCMV concentrations, more than half of the results deviated less than ±0.2 log10 from the target value, while more than 95% deviated less than ±0.4 log10 from the target value. Evaluation of intra- and inter-laboratory variation of dPCR results confirmed high reproducibility and trueness of the method. This work demonstrates that dPCR has the potential to act as a calibration independent reference measurement procedure for the value assignment of hCMV calibration and reference materials to support qPCR calibration as well as ultimately for routine hCMV load testing.


Asunto(s)
Citomegalovirus , Calibración , Citomegalovirus/genética , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reproducibilidad de los Resultados
11.
Anal Bioanal Chem ; 412(5): 1129-1136, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31863124

RESUMEN

The outcome of proficiency tests (PTs) is influenced, among others, by the evaluation procedure chosen by the PT provider. In particular for PTs on GMO testing a log-data transformation is often applied to fit skewed data distributions into a normal distribution. The study presented here has challenged this commonly applied approach. The 56 data populations from proficiency testing rounds organised since 2010 by the European Union Reference Laboratory for Genetically Modified Food and Feed (EURL GMFF) were used to investigate the assumption of a normal distribution of reported results within a PT. Statistical evaluation of the data distributions, composed of 3178 reported results, revealed that 41 of the 56 datasets showed indeed a normal distribution. For 10 datasets, the deviation from normality was not statistically significant at the raw or log scale, indicating that the normality assumption cannot be rejected. The normality of the five remaining datasets was statistically significant after log-data transformation. These datasets, however, appeared to be multimodal as a result of technical/experimental issues with the applied methods. On the basis of the real datasets analysed herein, it is concluded that the log transformation of reported data in proficiency testing rounds is often not necessary and should be cautiously applied. It is further shown that the log-data transformation, when applied to PT results, favours the positive performance scoring for overestimated results and strongly penalises underestimated results. The evaluation of the participants' performance without prior transformation of their results may highlight rather than hide relevant underlying analytical problems and is recommended as an outcome of this study. Graphical abstract.


Asunto(s)
Alimentación Animal/microbiología , Microbiología de Alimentos , Ensayos de Aptitud de Laboratorios , Organismos Modificados Genéticamente , Conjuntos de Datos como Asunto , Reproducibilidad de los Resultados
12.
Anal Bioanal Chem ; 411(1): 7-11, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30397759

RESUMEN

The GM content in a food or feed product produced from or containing genetically modified organisms (GMO) has to be expressed in Europe in the form of a GM mass fraction. However, the most widely used quantification methods, based on PCR, are basically counting PCR-amplifiable DNA fragments in a sample extract. This paper outlines the requirements for obtaining comparable measurement results which are fit for regulatory decision-making. It introduces the concept of a reference measurement system which enables GMO analysis laboratories to relate their results to a universally accessible reference, thus establishing metrological traceability to a unique reference point. The conversion factors required for transforming data from one measurement unit into the other have to carry a minimum uncertainty and are anchored to specified certified reference materials. The establishment of such conversion factors and related calibration approaches to achieve comparable GM quantification results are sketched. Graphical abstract ᅟ.


Asunto(s)
ADN de Plantas/análisis , ADN de Plantas/normas , Plantas Modificadas Genéticamente/genética , Calibración , Variaciones en el Número de Copia de ADN , ADN de Plantas/genética , Europa (Continente) , Laboratorios , Legislación Alimentaria , Reacción en Cadena de la Polimerasa , Estándares de Referencia , Incertidumbre
13.
Clin Chem ; 64(9): 1296-1307, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29903874

RESUMEN

BACKGROUND: Genetic testing of tumor tissue and circulating cell-free DNA for somatic variants guides patient treatment of many cancers. Such measurements will be fundamental in the future support of precision medicine. However, there are currently no primary reference measurement procedures available for nucleic acid quantification that would support translation of tests for circulating tumor DNA into routine use. METHODS: We assessed the accuracy of digital PCR (dPCR) for copy number quantification of a frequently occurring single-nucleotide variant in colorectal cancer (KRAS c.35G>A, p.Gly12Asp, from hereon termed G12D) by evaluating potential sources of uncertainty that influence dPCR measurement. RESULTS: Concentration values for samples of KRAS G12D and wild-type plasmid templates varied by <1.2-fold when measured using 5 different assays with varying detection chemistry (hydrolysis, scorpion probes, and intercalating dyes) and <1.3-fold with 4 commercial dPCR platforms. Measurement trueness of a selected dPCR assay and platform was validated by comparison with an orthogonal method (inductively coupled plasma mass spectrometry). The candidate dPCR reference measurement procedure showed linear quantification over a wide range of copies per reaction and high repeatability and interlaboratory reproducibility (CV, 2%-8% and 5%-10%, respectively). CONCLUSIONS: This work validates dPCR as an SI-traceable reference measurement procedure based on enumeration and demonstrates how it can be applied for assignment of copy number concentration and fractional abundance values to DNA reference materials in an aqueous solution. High-accuracy measurements using dPCR will support the implementation and traceable standardization of molecular diagnostic procedures needed for advancements in precision medicine.


Asunto(s)
Reacción en Cadena de la Polimerasa/métodos , Medicina de Precisión , Variaciones en el Número de Copia de ADN , Humanos , Espectrometría de Masas , Reproducibilidad de los Resultados
14.
Biomol Detect Quantif ; 9: 29-39, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27617230

RESUMEN

Digital PCR has become the emerging technique for the sequence-specific detection and quantification of nucleic acids for various applications. During the past years, numerous reports on the development of new digital PCR methods have been published. Maturation of these developments into reliable analytical methods suitable for diagnostic or other routine testing purposes requires their validation for the intended use. Here, the results of an in-house validation of a droplet digital PCR method are presented. This method is intended for the quantification of the absolute copy number concentration of a purified linearized plasmid in solution with a nucleic acid background. It has been investigated which factors within the measurement process have a significant effect on the measurement results, and the contribution to the overall measurement uncertainty has been estimated. A comprehensive overview is provided on all the aspects that should be investigated when performing an in-house method validation of a digital PCR method.

15.
Anal Chem ; 88(24): 12169-12176, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28193036

RESUMEN

Enumeration-based determination of DNA copy-concentration was assessed through an international comparison among national metrology institutes (NMIs) and designated institutes (DIs). Enumeration-based quantification does not require a calibration standard thereby providing a route to "absolute quantification", which offers the potential for reliable value assignments of DNA reference materials, and International System of Units (SI) traceability to copy number 1 through accurate counting. In this study, 2 enumeration-based methods, flow cytometric (FCM) counting and the digital polymerase chain reaction (dPCR), were compared to quantify a solution of the pBR322 plasmid at a concentration of several thousand copies per microliter. In addition, 2 orthogonal chemical-analysis methods based on nucleotide quantification, isotope-dilution mass spectrometry (IDMS) and capillary electrophoresis (CE) were applied to quantify a more concentrated solution of the plasmid. Although 9 dPCR results from 8 laboratories showed some dispersion (relative standard deviation [RSD] = 11.8%), their means were closely aligned with those of the FCM-based counting method and the orthogonal chemical-analysis methods, corrected for gravimetric dilution factors. Using the means of dPCR results, the RSD of all 4 methods was 1.8%, which strongly supported the validity of the recent enumeration approaches. Despite a good overall agreement, the individual dPCR results were not sufficiently covered by the reported measurement uncertainties. These findings suggest that some laboratories may not have considered all factors contributing to the measurement uncertainty of dPCR, and further investigation of this possibility is warranted.


Asunto(s)
ADN/análisis , Citometría de Flujo/métodos , Plásmidos/análisis , Reacción en Cadena de la Polimerasa/métodos , Electroforesis Capilar , Espectrometría de Masas , Nucleótidos/análisis
16.
Front Chem ; 3: 56, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26539428

RESUMEN

This paper describes the production and characteristics of the nanoparticle test materials prepared for common use in the collaborative research project NanoChOp (Chemical and optical characterization of nanomaterials in biological systems), in casu suspensions of silica nanoparticles and CdSe/CdS/ZnS quantum dots (QDs). This paper is the first to illustrate how to assess whether nanoparticle test materials meet the requirements of a "reference material" (ISO Guide 30, 2015) or rather those of the recently defined category of "representative test material (RTM)" (ISO/TS 16195, 2013). The NanoChOp test materials were investigated with small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and centrifugal liquid sedimentation (CLS) to establish whether they complied with the required monomodal particle size distribution. The presence of impurities, aggregates, agglomerates, and viable microorganisms in the suspensions was investigated with DLS, CLS, optical and electron microscopy and via plating on nutrient agar. Suitability of surface functionalization was investigated with attenuated total reflection Fourier transform infrared spectrometry (ATR-FTIR) and via the capacity of the nanoparticles to be fluorescently labeled or to bind antibodies. Between-unit homogeneity and stability were investigated in terms of particle size and zeta potential. This paper shows that only based on the outcome of a detailed characterization process one can raise the status of a test material to RTM or reference material, and how this status depends on its intended use.

17.
Anal Bioanal Chem ; 407(7): 1831-40, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25600685

RESUMEN

The value assignment for properties of six certified reference materials (ERM-AD623a-f), each containing a plasmid DNA solution ranging from 1 million to 10 copies per µL, by using digital PCR (dPCR) with the BioMark™ HD System (Fluidigm) has been verified by applying droplet digital PCR (ddPCR) using the QX100 system (Bio-Rad). One of the critical factors in the measurement of copy number concentrations by digital PCR is the partition volume. Therefore, we determined the average droplet volume by optical microscopy, revealing an average droplet volume that is 8 % smaller than the droplet volume used as the defined parameter in the QuantaSoft software version 1.3.2.0 (Bio-Rad) to calculate the copy number concentration. This observation explains why copy number concentrations estimated with ddPCR and using an average droplet volume predefined in the QuantaSoft software were systematically lower than those measured by dPCR, creating a significant bias between the values obtained by these two techniques. The difference was not significant anymore when the measured droplet volume of 0.834 nL was used to estimate copy number concentrations. A new version of QuantaSoft software (version 1.6.6.0320), which has since been released with Bio-Rad's new QX200 systems and QX100 upgrades, uses a droplet volume of 0.85 nL as a defined parameter to calculate copy number concentration.


Asunto(s)
Variaciones en el Número de Copia de ADN , Reacción en Cadena de la Polimerasa/métodos , Estándares de Referencia
19.
Anal Bioanal Chem ; 396(6): 1969-75, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19960339

RESUMEN

Despite the fact that the measurement unit for the quantification of GMOs in food and feed products has not yet been unambiguously agreed upon in Europe, international trade requires reliable GMO analysis measuring comparably the GMO content of products. The two reference systems, based either on mass fractions or on copy number ratios, and their metrological traceability chains are presented and discussed. It is concluded that, properly established and expressed, measurement results in copy number ratios can provide a metrologically sound reference system. In this case, certified reference materials used for calibration and quality control can be independent of each other and the uncertainty derived from calibration can correctly be included in the overall uncertainty of the GMO measurement. However, further efforts are required to establish this metrological system.


Asunto(s)
Técnicas Genéticas/normas , Plantas Modificadas Genéticamente/genética , Calibración , Dosificación de Gen , Estándares de Referencia
20.
Anal Bioanal Chem ; 396(6): 2143-50, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19816678

RESUMEN

Quantitative analysis of genetically modified (GM) foods requires estimation of the amount of the transgenic event relative to an endogenous gene. Regulatory authorities in the European Union (EU) have defined the labelling threshold for GM food on the copy number ratio between the transgenic event and an endogenous gene. Real-time polymerase chain reaction (PCR) is currently being used for quantification of GM organisms (GMOs). Limitations in real-time PCR applications to detect very low number of DNA targets has led to new developments such as the digital PCR (dPCR) which allows accurate measurement of DNA copies without the need for a reference calibrator. In this paper, the amount of maize MON810 and hmg copies present in a DNA extract from seed powders certified for their mass content and for their copy number ratio was measured by dPCR. The ratio of these absolute copy numbers determined by dPCR was found to be identical to the ratios measured by real-time quantitative PCR (qPCR) using a plasmid DNA calibrator. These results indicate that both methods could be applied to determine the copy number ratio in MON810. The reported values were in agreement with estimations from a model elaborated to convert mass fractions into copy number fractions in MON810 varieties. This model was challenged on two MON810 varieties used for the production of MON810 certified reference materials (CRMs) which differ in the parental origin of the introduced GM trait. We conclude that dPCR has a high metrological quality and can be used for certifying GM CRMs in terms of DNA copy number ratio.


Asunto(s)
Plantas Modificadas Genéticamente/genética , Reacción en Cadena de la Polimerasa/métodos , Zea mays/genética , ADN de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...