Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Front Vet Sci ; 10: 1202001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908840

RESUMEN

Background: TGFß signaling appears to contribute to the pathogenesis of myxomatous mitral valve disease (MMVD) in both dogs and humans. However, little is known about the extent of the downstream signaling changes that will then affect cell phenotype and function in both species. Objective: Identify changes in downstream signals in the TGFß pathway in canine MMVD and examine the effects of antagonism of one significant signal (SMAD2 was selected). Materials and methods: Canine cultures of normal quiescent valve interstitial cells (qVICs) and disease-derived activated myofibroblasts (aVICs) (n = 6) were examined for TGFß signaling protein expression using a commercial antibody array. Significant changes were confirmed, and additional proteins of interest downstream in the TGFß signaling pathway and markers of cell phenotype were examined (PRAS40, S6K, elF4E IRS-1, αSMA, and VIM), using protein immunoblotting. RT-PCR examined expression of gene markers of VIC activation (ACTA2, TAGLN, and MYH10; encoding the proteins αSMA, SM22, and Smemb, respectively). Attenuation of pSMAD2 in aVICs was examined using a combination of RNA interference technology (siRNA) and the SMAD7 (antagonizes SMAD2) agonist asiaticoside. Results: The antibody array identified significant changes (P < 0.05) in 19 proteins, of which six were phosphorylated (p). There was increased expression of pSMAD2 and pRAC1 and decreased expression of pmTOR, pERK1/2, and pAKT1. Expression of pPRAS40 and pIRS-1 was increased, as was the mTOR downstream transcription factor pS6K, with increased expression of peIF4E in aVICs, indicating negative feedback control of the PI3K/AKT/mTOR pathway. SMAD2 antagonism by siRNA and the SMAD7 agonist asiaticoside decreased detection of pSMAD by at least 50%, significantly decreased expression of the aVIC gene markers ACTA2, TAGLN, and MYH10, and pαSMA, pAKT2, and pERK1, but had no effect on pS6K, pERK2, or pVIM expression in aVICs. SMAD2 antagonism transitioned diseased aVICs to normal qVICs, while maintaining a mesenchymal phenotype (VIM+) while concurrently affecting non-canonical TGFß signaling. Conclusion: MMVD is associated with changes in both the canonical and non-canonical TGFß signaling pathway. Antagonism of SMAD2 transitions diseased-activated myofibroblasts back to a normal phenotype, providing data that will inform studies on developing novel therapeutics to treat MMVD in dogs and humans.

2.
Cell Prolif ; 56(6): e13435, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36869852

RESUMEN

PI3K/AKT/mTOR signalling contributes to several cardiovascular disorders. The aim of this study was to examine the PI3K/AKT/mTOR pathway in myxomatous mitral valve disease (MMVD). Double-immunofluorescence examined expression of PI3K and TGF-ß1 in canine valves. Valve interstitial cells (VICs) from healthy or MMVD dogs were isolated and characterized. Healthy quiescent VICs (qVICs) were treated with TGF-ß1 and SC-79 to induce activated myofibroblast phenotypes (aVICs). Diseased valve-derived aVICs were treated with PI3K antagonists and expression of RPS6KB1 (encoding p70 S6K) was modulated using siRNA and gene overexpression. SA-ß-gal and TUNEL staining were used to identify cell senescence and apoptosis, and qPCR and ELISA to examine for senescence-associated secretory phenotype. Protein immunoblotting was used to examine expression of phosphorylated and total proteins. TGF-ß1 and PI3K are highly expressed in mitral valve tissues. Activation of PI3K/AKT/mTOR and increased expression of TGF-ß are found in aVICs. TGF-ß transitions qVICs to aVICs by upregulation of PI3K/AKT/mTOR. Antagonism of PI3K/AKT/mTOR reverses aVIC myofibroblast transition by inhibiting senescence and promoting autophagy. Upregulation of mTOR/S6K induces transformation of senescent aVICs, with reduced capacity for apoptosis and autophagy. Selective knockdown of p70 S6K reverses cell transition by attenuating cell senescence, inhibiting apoptosis and improving autophagy. TGF-ß-induced PI3K/AKT/mTOR signalling contributes to MMVD pathogenesis and plays crucial roles in the regulation of myofibroblast differentiation, apoptosis, autophagy and senescence in MMVD.


Asunto(s)
Estenosis de la Válvula Aórtica , Calcinosis , Perros , Animales , Válvula Mitral/metabolismo , Válvula Mitral/patología , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Estenosis de la Válvula Aórtica/metabolismo , Miofibroblastos/metabolismo , Válvula Aórtica/metabolismo , Células Cultivadas , Calcinosis/metabolismo , Senescencia Celular , Diferenciación Celular , Serina-Treonina Quinasas TOR/metabolismo , Fenotipo
3.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675156

RESUMEN

Arterial calcification is an important characteristic of cardiovascular disease. It has key parallels with skeletal mineralization; however, the underlying cellular mechanisms responsible are not fully understood. Mitochondrial dynamics regulate both bone and vascular function. In this study, we therefore examined mitochondrial function in vascular smooth muscle cell (VSMC) calcification. Phosphate (Pi)-induced VSMC calcification was associated with elongated mitochondria (1.6-fold increase, p < 0.001), increased mitochondrial reactive oxygen species (ROS) production (1.83-fold increase, p < 0.001) and reduced mitophagy (9.6-fold decrease, p < 0.01). An increase in protein expression of optic atrophy protein 1 (OPA1; 2.1-fold increase, p < 0.05) and a converse decrease in expression of dynamin-related protein 1 (DRP1; 1.5-fold decrease, p < 0.05), two crucial proteins required for the mitochondrial fusion and fission process, respectively, were noted. Furthermore, the phosphorylation of DRP1 Ser637 was increased in the cytoplasm of calcified VSMCs (5.50-fold increase), suppressing mitochondrial translocation of DRP1. Additionally, calcified VSMCs showed enhanced expression of p53 (2.5-fold increase, p < 0.05) and ß-galactosidase activity (1.8-fold increase, p < 0.001), the cellular senescence markers. siRNA-mediated p53 knockdown reduced calcium deposition (8.1-fold decrease, p < 0.01), mitochondrial length (3.0-fold decrease, p < 0.001) and ß-galactosidase activity (2.6-fold decrease, p < 0.001), with concomitant mitophagy induction (3.1-fold increase, p < 0.05). Reduced OPA1 (4.1-fold decrease, p < 0.05) and increased DRP1 protein expression (2.6-fold increase, p < 0.05) with decreased phosphorylation of DRP1 Ser637 (3.20-fold decrease, p < 0.001) was also observed upon p53 knockdown in calcifying VSMCs. In summary, we demonstrate that VSMC calcification promotes notable mitochondrial elongation and cellular senescence via DRP1 phosphorylation. Furthermore, our work indicates that p53-induced mitochondrial fusion underpins cellular senescence by reducing mitochondrial function.


Asunto(s)
Dinámicas Mitocondriales , Músculo Liso Vascular , Calcificación Vascular , Humanos , beta-Galactosidasa/metabolismo , Células Cultivadas , Dinámicas Mitocondriales/genética , Dinámicas Mitocondriales/fisiología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/metabolismo
4.
Interv Neuroradiol ; : 15910199221133863, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36285452

RESUMEN

BACKGROUND AND PURPOSE: Recent endovascular trials have spurred a paradigm shift toward routine use of CT perfusion (CTP) for decision-making in acute ischemic stroke. CTP use in the late window, however, remains under evaluation. Our objective was to assess the accuracy of CTP-predicted core in the late window. METHODS: In a retrospective review of our prospectively identified stroke registry at a single, comprehensive stroke center, we included patients with anterior large vessel occlusions presenting within the 6-24 h window who underwent baseline CTP evaluation and achieved TICI2b or TICI3 reperfusion on endovascular treatment. We recorded baseline CTP-predicted core volumes at relative cerebral blood flow (CBF) thresholds of <30% <34%, and <38% using RAPID software. Final infarct volumes (FIV) were calculated using follow up MRI and CT, obtained within 72 h after stroke onset. RESULTS: Of the eligible patients, 134 met our inclusion criteria. Mean FIV was 39.5 (SD 49.6). Median CTP to reperfusion time was 93.5 min. Median absolute differences between CTP-predicted core and FIV were 14.7, 14.9, and 16.0 ml at <30%, <34%, and <38%, respectively. Correlation between CTP-predicted ischemic cores and FIV was moderate and statistically significant at all thresholds: r = 0.43 (p <0.001), r = 0.43 (p <0.001), and r = 0.42 (p <0.001) at the <30%, <34%, and <38% cutoffs, respectively. CONCLUSION: CTP cores in the 6-24 h period underestimate FIV, especially with larger infarcts. CTP-predicted core volumes in the late window show moderate positive correlation with FIV.

5.
J Cell Physiol ; 237(11): 4303-4316, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36166694

RESUMEN

Vascular calcification is associated with aging, type 2 diabetes, and atherosclerosis, and increases the risk of cardiovascular morbidity and mortality. It is an active, highly regulated process that resembles physiological bone formation. It has previously been established that pharmacological doses of metformin alleviate arterial calcification through adenosine monophosphate-activated protein kinase (AMPK)-activated autophagy, however the specific pathway remains elusive. In the present study we hypothesized that metformin protects against arterial calcification through the direct autophagic degradation of runt-related transcription factor 2 (Runx2). Calcification was blunted in vascular smooth muscle cells (VSMCs) by metformin in a dose-dependent manner (0.5-1.5 mM) compared to control cells (p < 0.01). VSMCs cultured under high-phosphate (Pi) conditions in the presence of metformin (1 mM) showed a significant increase in LC3 puncta following bafilomycin-A1 (Baf-A; 5 nM) treatment compared to control cells (p < 0.001). Furthermore, reduced expression of Runx2 was observed in the nuclei of metformin-treated calcifying VSMCs (p < 0.0001). Evaluation of the functional role of autophagy through Atg3 knockdown in VSMCs showed aggravated Pi-induced calcification (p < 0.0001), failure to induce autophagy (punctate LC3) (p < 0.001) and increased nuclear Runx2 expression (p < 0.0001) in VSMCs cultured under high Pi conditions in the presence of metformin (1 mM). Mechanistic studies employing three-way coimmunoprecipitation with Runx2, p62, and LC3 revealed that p62 binds to both LC3 and Runx2 upon metformin treatment in VSMCs. Furthermore, immunoblotting with LC3 revealed that Runx2 specifically binds with p62 and LC3-II in metformin-treated calcified VSMCs. Lastly, we investigated the importance of the autophagy pathway in vascular calcification in a clinical setting. Ex vivo clinical analyses of calcified diabetic lower limb artery tissues highlighted a negative association between Runx2 and LC3 in the vascular calcification process. These studies suggest that exploitation of metformin and its analogues may represent a novel therapeutic strategy for clinical intervention through the induction of AMPK/Autophagy Related 3 (Atg3)-dependent autophagy and the subsequent p62-mediated autophagic degradation of Runx2.


Asunto(s)
Metformina , Calcificación Vascular , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Metformina/efectos adversos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal , Calcificación Vascular/tratamiento farmacológico , Calcificación Vascular/prevención & control
7.
Front Cardiovasc Med ; 9: 872288, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35656405

RESUMEN

Mitral valve prolapse (MVP) due to myxomatous degeneration is one of the most important chronic degenerative cardiovascular diseases in people and dogs. It is a common cause of heart failure leading to significant morbidity and mortality in both species. Human MVP is usually classified into primary or non-syndromic, including Barlow's Disease (BD), fibro-elastic deficiency (FED) and Filamin-A mutation, and secondary or syndromic forms (typically familial), such as Marfan syndrome (MFS), Ehlers-Danlos syndrome, and Loeys-Dietz syndrome. Despite different etiologies the diseased valves share pathological features consistent with myxomatous degeneration. To reflect this common pathology the condition is often called myxomatous mitral valve degeneration (disease) (MMVD) and this term is universally used to describe the analogous condition in the dog. MMVD in both species is characterized by leaflet thickening and deformity, disorganized extracellular matrix, increased transformation of the quiescent valve interstitial cell (qVICs) to an activated state (aVICs), also known as activated myofibroblasts. Significant alterations in these cellular activities contribute to the initiation and progression of MMVD due to the increased expression of transforming growth factor-ß (TGF-ß) superfamily cytokines and the dysregulation of the TGF-ß signaling pathways. Further understanding the molecular mechanisms of MMVD is needed to identify pharmacological manipulation strategies of the signaling pathway that might regulate VIC differentiation and so control the disease onset and development. This review briefly summarizes current understanding of the histopathology, cellular activities, molecular mechanisms and pathogenesis of MMVD in dogs and humans, and in more detail reviews the evidence for the role of TGF-ß.

8.
Emerg Radiol ; 29(5): 887-893, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35764902

RESUMEN

PURPOSE: To evaluate the percentage of misplaced medical support lines and tubes in deceased trauma patients using post-mortem computed tomography (PMCT). METHODS: Over a 9-year period, trauma patients who died at or soon after arrival in the emergency department were candidates for inclusion. Whole body CT was performed without contrast with support medical devices left in place. Injury severity score (ISS) was calculated by the trauma registrar based on the injuries identified on PMCT. The location of support medical devices was documented in the finalized radiology reports. RESULTS: A total of 87 decedents underwent PMCT, of which 69% (n = 60) were male. For ten decedents, the age was unknown. For the remaining 77 decedents, the average age was 48.4 years (range 18-96). The average ISS for the cohort was 43.4. Each decedent had an average of 3.3 support devices (2.9-3.6, 95% CI), of which an average of 1 (31.3%, 0.8-1.2, 95% CI) was malpositioned. A total of 60 (69.0%) had at least one malpositioned medical support device. The most commonly malpositioned devices were decompressive needle thoracostomies (n = 25/32, 78.1%). The least malpositioned devices were intraosseous catheters (n = 7/69, 10.1%). Nearly one quarter (n = 19/82, 23.2%) of mechanical airways were malpositioned, including 4.9% with esophageal intubation. CONCLUSION: Malpositioned supportive medical devices are commonly identified on post-mortem computed tomography trauma decedents, seen in 69.0% of the cohort, including nearly one quarter with malpositioned mechanical airways. Post-mortem CT can serve as a useful adjunct in the quality improvement process by providing data for education of trauma and emergency physicians and first responders.


Asunto(s)
Infusiones Intraóseas , Tomografía Computarizada por Rayos X , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Autopsia/métodos , Servicio de Urgencia en Hospital , Femenino , Humanos , Puntaje de Gravedad del Traumatismo , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Rayos X/métodos , Adulto Joven
9.
J Stroke Cerebrovasc Dis ; 31(3): 106263, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34954596

RESUMEN

OBJECTIVES: Recent endovascular trials have established the use of CT perfusion (CTP) in endovascular treatment selection for patients with large vessel occlusions (LVO). However, the relationship between CTP and collateral circulation is unclear in delayed time windows. We explored the relationship between CT Angiogram (CTA) collaterals and CTP parameters in delayed time windows (6-24 hours). MATERIALS AND METHODS: We utilized a single institutional, retrospective stroke registry of consecutive patients between May 2016 and May 2018 with anterior LVO with CTA and CTP imaging within 6-24 hours of stroke onset. We graded baseline collaterals on single phase CTA using modified Tan collateral score (0-3) and dichotomized into good (2-3) and poor (0-1) collaterals. We recorded automated CTP parameters, including estimated ischemic core (cerebral blood flow (CBF)<30%), penumbra (Tmax>6 s), and mismatch ratio. We used Mann-Whitney test and linear regression to assess associations. RESULTS: We included 48 patients with median age of 62 years (IQR= 52-72), median core of 17.5 mL (IQR=0-47), and median penumbra of 117.5 mL (IQR= 62-163.5). Patients with good collaterals had smaller median core (0 mL, IQR=0-12 mL vs. 40.5 mL, IQR=15-60 mL) (p < 0.001), smaller median penumbra (83.5 mL, IQR=43-135 mL vs. 142.5 mL, IQR=77-190 mL) (p = 0.04), larger median mismatch ratio (13.7, IQR=5.7-58.0 vs. 3.1, IQR=2.1-5.0) (p < 0.001), and lower median hypoperfusion intensity ratio (0.23, IQR=0-0.44 vs. 0.52, IQR=0.45-0.63) (p < 0.001) than patients with poor collaterals. CONCLUSIONS: In delayed time window LVO patients, good CTA collaterals are significantly associated with smaller CTP core, smaller penumbra, larger mismatch ratio, and lower hypoperfusion intensity ratio. CTA collateral assessment could be a potential valuable surrogate to perfusion imaging, particularly in stroke centers where CTP is unavailable.


Asunto(s)
Accidente Cerebrovascular Isquémico , Anciano , Angiografía por Tomografía Computarizada , Humanos , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/terapia , Persona de Mediana Edad , Perfusión , Estudios Retrospectivos , Factores de Tiempo , Tomografía Computarizada por Rayos X
10.
Animals (Basel) ; 11(4)2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33800666

RESUMEN

Myxomatous mitral valve disease (MMVD) is the most common cardiac disease in dogs. It varies from dogs without clinical signs to those developing left-sided congestive heart failure, leading to death. Cavalier King Charles Spaniels (CKCSs) are particularly susceptible to MMVD. We hypothesised that within the elderly CKCS population, there is a sub-cohort of MMVD-affected dogs that do not have cardiac remodelling. The objectives of the present study were (i) to determine the prevalence and the degree of cardiac remodelling associated with MMVD; and (ii) assess the effect of age, gender, and body weight on echocardiographic status in a population of aged CKCSs. A total of 126 CKCSs ≥ 8 years old were prospectively included. They all had a physical and echocardiographic examination. A systolic murmur was detected in 89% of dogs; the presence of clinical signs was reported in 19% of them; and echocardiographic evidence of MMVD was described in 100%. Despite the high prevalence, 44.4% of the dogs were clear of echocardiographic signs of cardiac remodelling. Age was significantly associated with the presence and severity of cardiac remodelling and mitral valve prolapse. Our results showed that a proportion of elderly CKCS with confirmed MMVD did not undergo advanced stages of this pathology.

11.
Stroke ; 52(2): 498-504, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33406866

RESUMEN

BACKGROUND AND PURPOSE: The Alberta Stroke Program Early Computed Tomography (CT) Score (ASPECTS) and CT perfusion (CTP) are commonly used to predict the ischemic core in acute ischemic strokes. CT angiography source images (CTA-SI) can also provide additional information to identify the extent of ischemia. Our objective was to investigate the correlation of noncontrast CT (NCCT) ASPECTS and CTA-SI ASPECTS with CTP core volumes. METHODS: We utilized a single institutional, retrospective registry of consecutive patients with acute ischemic stroke with large vessel occlusion between May 2016 and May 2018. We graded ASPECTS both on baseline NCCT and CTA-SI and measured CTP core using automated RAPID software (cerebral blood flow <30%). We used Spearman's correlation coefficients to evaluate the correlation between continuous variables. RESULTS: A total of 52 patients fit the inclusion criteria of large vessel occlusion in 6 to 24 hours and baseline imaging work up of NCCT, CTA, and CTP. The median age was 63 (interquartile range=53.5-75) and 38.46% were female. The median NCCT ASPECTS was 7 (interquartile range=6-9), CTA-SI ASPECTS was 5 (interquartile range=4-7), and CTP core was 14.5 mL (interquartile range=0-46 mL). There was a moderate correlation between NCCT ASPECTS and CTP core (rs=-0.55, P<0.0001) and between CTA-SI ASPECTS and CTP core (rs=-0.50, P=0.0002). The optimal NCCT ASPECTS cutoff score to detect CTP core ≤70 mL was ≥6 (sensitivity, 0.84; specificity, 0.57; positive predictive value, 0.93; negative predictive value, 0.36) and the optimal CTA-SI ASPECTS was ≥5 (sensitivity, 0.76; specificity, 0.71; positive predictive value, 0.94; negative predictive value, 0.31). CONCLUSIONS: There was a moderate correlation between NCCT and CTA-SI ASPECTS in predicting CTP defined ischemic core in delayed time windows. Further studies are needed to determine if NCCT and CTA imaging could be used for image-based patient selection when CTP imaging is not available.


Asunto(s)
Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Anciano , Anciano de 80 o más Años , Alberta , Femenino , Humanos , Accidente Cerebrovascular Isquémico/patología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
12.
Front Genet ; 11: 919, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101359

RESUMEN

The maintenance of a healthy cardiovascular system requires expression of genes that contribute to essential biological activities and repression of those that are associated with functions likely to be detrimental to cardiovascular homeostasis. Vascular calcification is a major disruption to cardiovascular homeostasis, where tissues of the cardiovascular system undergo ectopic calcification and consequent dysfunction, but little is known about the expression of calcification genes in the healthy cardiovascular system. Large animal models are of increasing importance in cardiovascular disease research as they demonstrate more similar cardiovascular features (in terms of anatomy, physiology and size) to humans than do rodent species. We used RNA sequencing results from the sheep, which has been utilized extensively to examine calcification of prosthetic cardiac valves, to explore the transcriptome of the heart and cardiac valves in this large animal, in particular looking at expression of calcification and extracellular matrix genes. We then examined genes implicated in the process of vascular calcification in a wide array of cardiovascular tissues and across multiple developmental stages, using RT-qPCR. Our results demonstrate that there is a balance between genes that promote and those that suppress mineralization during development and across cardiovascular tissues. We show extensive expression of genes encoding proteins involved in formation and maintenance of the extracellular matrix in cardiovascular tissues, and high expression of hematopoietic genes in the cardiac valves. Our analysis will support future research into the functions of implicated genes in the development of valve calcification, and increase the utility of the sheep as a large animal model for understanding ectopic calcification in cardiovascular disease. This study provides a foundation to explore the transcriptome of the developing cardiovascular system and is a valuable resource for the fields of mammalian genomics and cardiovascular research.

13.
Front Genet ; 11: 372, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32395121

RESUMEN

Myxomatous mitral valve disease (MMVD) is the most common acquired canine cardiovascular disease and shares many similarities with human mitral valvulopathies. While transcriptomic datasets are available for the end-stage disease in both species, there is no information on how gene expression changes as the disease progresses, such that it cannot be stated with certainty if the changes seen in end-stage disease are casual or consequential. In contrast to humans, the disease in dogs can be more readily examined as it progresses, and this allows an opportunity for insight into disease pathogenesis relevant to both species. The aim of this study was to identify changes in valve gene expression as canine MMVD advances over an entire life-time, from normal (grade 0) to severely affected (grade 4), and differences in gene expression comparing normal and disease areas of the same valve. Transcriptomic profiling identified 1002 differentially expressed genes (DEGs) across all four disease grades when compared with normal valves with the greatest number of DEGs in grade 3 (673) and grade 4 (507). DEGs were associated with a large number of gene families, including genes encoding cytoskeletal filaments, peptidases, extra-cellular matrix (ECM) proteins, chemokines and integrins. Gene enrichment analysis identified significant grade-dependent changes in gene clustering, with clusters trending both up and down as disease progressed. Significant grade-dependent changes in hallmark disease gene expression intensity were identified, including ACTA2, HTR2B, MMP12, and CDKN2A. Gene Ontology terms were dominated by terms for ECM and inflammation with TGFß1, TNF, IFGN identified as the top up-stream regulators in both whole and dissected diseased valve samples. These data show that while disease progression in MMVD is associated with increasing numbers of DEGs, TGFß appears to be the dominant signaling pathway controlling pathogenesis irrespective of disease severity.

14.
Res Vet Sci ; 128: 99-106, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31765842

RESUMEN

Myxomatous mitral valve disease (MMVD) is the single most important acquired cardiovascular disease of the dog. Much is known about the cellular changes and the contribution of activated myofibroblasts (valve interstitial cells (aVICs) to the valve extra-cellular matrix remodelling characteristic of the disease. However, little is known on how aVIC survival might contribute to disease pathogenesis. This study examined the temporal (disease severity-dependent) and spatial distribution of aVICs in MMVD valves, the expression of a range of apoptosis-related genes in cultured VICs from both normal (quiescent VIC (qVIC) and diseased (aVIC) valves, and the differential effects of doxorubicin treatment, as a trigger of apoptosis, on expression of the same genes. Activated myofibroblasts were identified in normal valves at the valve base only (the area closest to the annulus), and then became more numerous and apparent along the valve length as the disease progressed, with evidence of cell survival at the valve base. There were no significant differences in basal gene expression comparing qVICs and aVICs for CASP3, FAS, BID, BAX, BCL2, CASP8, DDIAS, XIAP and BIRC5. After doxorubicin treatment (2 mM) for 8 h there was significant difference (P < .05) in the expression of BID, BCL2, DDIAS, and CASP8, but when assessed for interactions using a mixed model ANOVA only CASP8 was significantly different because of treatment (P < .05). These data suggest aVIC survival in MMVD valves may be a consequence of heightened resistance of aVICs to apoptosis, but would require confirmation examining expression of the relevant proteins.


Asunto(s)
Apoptosis/fisiología , Enfermedades de los Perros/patología , Enfermedades de las Válvulas Cardíacas/veterinaria , Válvula Mitral/patología , Miofibroblastos/fisiología , Animales , Apoptosis/genética , Enfermedades de los Perros/metabolismo , Perros , Doxorrubicina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Enfermedades de las Válvulas Cardíacas/metabolismo , Enfermedades de las Válvulas Cardíacas/patología , Válvula Mitral/citología , Válvula Mitral/metabolismo
15.
PLoS One ; 14(8): e0221126, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31415646

RESUMEN

The utility of cells cultured from the mitral valve as models of myxomatous diseases needs to be properly validated. In this study valve interstitial cells (VICs) and valve endothelial cells (VECs) were cultured from normal and diseased canine mitral valves in 2% (v/v) or 10% FBS media, in the presence of TGFß1, 2 and 3, the TGFß RI kinase inhibitor SB431542 and TGFß neutralising antibodies, 5HT and the 5HT2RB antagonist LY272015. Cultures were examined by morphology, transcriptomic profiling, protein expression of the cell specific markers αSMA and SM22α (VICs), and CD31 (VECs), deposition of proteoglycans (PG), the PG versican, and the TGFßs themselves. VECs derived from normal valves were CD31+/αSMA-, but those from diseased valves were αSMA+, indicating endothelial-to-mesenchymal (EndoMT) transition had occurred. The TGFßs induced EndoMT in normal VECs, and this was abolished by SB431542, with significant changes in αSMA, CD31 and HAS2 expression (P<0.05). Normal VICs cultured in 10% FBS media were αSMA+ (activated myofibroblast (disease) phenotype), but were αSMA- when grown in 2% FBS. VICs from diseased dogs were αSMA+ in 2% FBS (retention of the activated myofibroblast disease phenotype), with significantly increased TGFß1 expression (P<0.05) compared to normal cells. Treatment of normal and diseased VICs with the TGFßs significantly increased expression of αSMA, SM22α, versican, the TGFßs themselves, and deposition of PGs (P<0.05), with TGFß1 being the most potent activator. These effects were either abolished or markedly reduced by SB431542 and a pan-TGFß neutralizing antibody (P<0.05). SB431542 also markedly reduced αSMA expression in VICs from diseased valves, but 5HT and LY272015 had no effect on VIC phenotype. Transcriptomic profiling identified clear differences in gene expression for the different conditions and treatments that partially matched that seen in native diseased valve tissue, including changes in expression of ACTA2 (αSMA), 5HTR2B, TAGLN (SM22α) and MYH10 (SMemb), gene ontology terms and canonical signalling pathways. Normal and diseased VICs and normal VECs from canine mitral valves can be successfully grown in culture with retention of phenotype, which can be manipulated using TGFß1 and the TGFß RI kinase inhibitor SB431542. This optimized cell system can now be used to model MMVD to elucidate disease mechanisms and identify key regulators of disease progression.


Asunto(s)
Técnicas de Cultivo de Célula , Enfermedades de los Perros/metabolismo , Células Endoteliales/metabolismo , Prolapso de la Válvula Mitral/metabolismo , Válvula Mitral/metabolismo , Modelos Cardiovasculares , Miofibroblastos/metabolismo , Animales , Antígenos de Diferenciación/metabolismo , Enfermedades de los Perros/patología , Perros , Células Endoteliales/patología , Válvula Mitral/patología , Prolapso de la Válvula Mitral/patología , Miofibroblastos/patología
17.
Mol Med Rep ; 17(2): 2100-2106, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29207136

RESUMEN

Calcific aortic valve disease (CAVD) involves progressive valve leaflet thickening and severe calcification, impairing leaflet motion. The in vitro calcification of primary rat, human, porcine and bovine aortic valve interstitial cells (VICs) is commonly employed to investigate CAVD mechanisms. However, to date, no published studies have utilised cell lines to investigate this process. The present study has therefore generated and evaluated the calcification potential of immortalized cell lines derived from sheep and rat VICs. Immortalised sheep (SAVIC) and rat (RAVIC) cell lines were produced by transduction with a recombinant lentivirus encoding the Simian virus (SV40) large and small T antigens (sheep), or large T antigen only (rat), which expressed markers of VICs (vimentin and α­smooth muscle actin). Calcification was induced in the presence of calcium (Ca; 2.7 mM) in SAVICs (1.9 fold; P<0.001) and RAVICs (4.6 fold; P<0.01). Furthermore, a synergistic effect of calcium and phosphate was observed (2.7 mM Ca/2.0 mM Pi) on VIC calcification in the two cell lines (P<0.001). Analysis of SAVICs revealed significant increases in the mRNA expression of two key genes associated with vascular calcification in cells cultured under calcifying conditions, runt related transcription factor­2 (RUNX2;1.3 fold; P<0.05 in 4.5 mM Ca) and sodium­dependent phosphate transporter­1 (PiT1; 1.2 fold; P<0.05 in 5.4 mM Ca). A concomitant decrease in the expression of the calcification inhibitor matrix Gla protein (MGP) was noted at 3.6 mM Ca (1.3 fold; P<0.01). Assessment of RAVICs revealed alterations in Runx2, Pit1 and Mgp mRNA expression levels (P<0.01). Furthermore, a significant reduction in calcification was observed in SAVICs following treatment with established calcification inhibitors, pyrophosphate (1.8 fold; P<0.01) and etidronate (3.2 fold; P<0.01). Overall, the present study demonstrated that the use of immortalised sheep and rat VIC cell lines is a convenient and cost effective system to investigate CAVD in vitro, and will make a useful contribution to increasing current understanding of the pathophysiological process.


Asunto(s)
Estenosis de la Válvula Aórtica/patología , Válvula Aórtica/citología , Válvula Aórtica/patología , Calcinosis/patología , Animales , Estenosis de la Válvula Aórtica/etiología , Biomarcadores , Calcinosis/etiología , Línea Celular , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Inmunohistoquímica , Masculino , Ratas , Ovinos
18.
J Vis Exp ; (129)2017 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-29286439

RESUMEN

Calcific aortic valve disease (CAVD) is characterized by the progressive thickening of the aortic valve leaflets. It is a condition frequently found in the elderly and end-stage renal disease (ESRD) patients, who commonly suffer from hyperphosphatemia and hypercalcemia. At present, there are no medication therapies that can stop its progression. The mechanisms that underlie this pathological process remain unclear. The aortic valve leaflet is composed of a thin layer of valve endothelial cells (VECs) on the outer surfaces of the aortic cusps, with valve interstitial cells (VICs) sandwiched between the VECs. The use of a rat model enables the in vitro study of ectopic calcification based on the in vivo physiopathological serum phosphate (Pi) and calcium (Ca) levels of patients who suffer from hyperphosphatemia and hypercalcemia. The described protocol details the isolation of a pure rat VIC population as shown by the expression of VIC markers: alpha-smooth muscle actin (α-SMA) vimentin and tissue growth factor beta (TGFß) 1 and 2, and the absence of cluster of differentiation (CD) 31, a VEC marker. By expanding these VICs, biochemical, genetic, and imaging studies can be performed to study and unravel the key mediators underpinning CAVD.


Asunto(s)
Válvula Aórtica/patología , Células Endoteliales/citología , Animales , Válvula Aórtica/citología , Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/diagnóstico , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , Calcinosis/diagnóstico , Calcinosis/metabolismo , Calcinosis/patología , Diferenciación Celular/fisiología , Células Cultivadas , Células Endoteliales/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
19.
Vet Sci ; 4(3)2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-29056693

RESUMEN

Myxomatous mitral valve disease is the single most important mitral valve disease in both dogs and humans. In the case of the dog it is ubiquitous, such that all aged dogs will have some evidence of the disease, and for humans it is known as Barlow's disease and affects up to 3% of the population, with an expected increase in prevalence as the population ages. Disease in the two species show many similarities and while both have the classic myxomatous degeneration only in humans is there extensive fibrosis. This dual pathology of the human disease markedly affects the valve transcriptome and the difference between the dog and human is dominated by changes in genes associated with fibrosis. This review will briefly examine the comparative valve pathology and then, in more detail, the transcriptomic profiling and gene expression reported so far for both species.

20.
Vet Radiol Ultrasound ; 58(4): 381-388, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28335088

RESUMEN

Idiopathic pulmonary fibrosis is an interstitial lung disease of unknown etiology resulting in progressive interstitial fibrosis, with a known predilection in West Highland white terriers. In humans, computed tomography (CT) is a standard method for providing diagnostic and prognostic information, and plays a major role in the idiopathic pulmonary fibrosis staging process. Objectives of this retrospective, analytical, cross-sectional study were to establish descriptive criteria for reporting CT findings and test correlations among CT, clinical findings and survival time in West Highland white terriers with idiopathic pulmonary fibrosis. Inclusion criteria for affected West Highland white terriers were a diagnosis of idiopathic pulmonary fibrosis and available CT, bronchoscopy, bronchoalveolar lavage, echocardiography, and routine blood analysis findings. Clinically normal West Highland white terriers were recruited for the control group. Survival times were recorded for affected dogs. The main CT lung pattern and clinical data were blindly and separately graded as mild, moderate, or severe. Twenty-one West Highland white terriers with idiopathic pulmonary fibrosis and 11 control West Highland white terriers were included. The severity of pulmonary CT findings was positively correlated with severity of clinical signs (ρ = 0.48, P = 0.029) and negatively associated with survival time after diagnosis (ρ = -0.56, P = 0.025). Affected dogs had higher lung attenuation (median: -563 Hounsfield Units (HU)) than control dogs (median: -761 HU), (P < 0.001). The most common CT characteristics were ground-glass pattern (16/21) considered as a mild degree of severity, and focal reticular and mosaic ground-glass patterns (10/21) considered as a moderate degree of severity. Findings supported the use of thoracic CT as a method for characterizing idiopathic pulmonary fibrosis in West Highland white terriers and providing prognostic information for owners.


Asunto(s)
Enfermedades de los Perros/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/veterinaria , Animales , Estudios Transversales , Enfermedades de los Perros/diagnóstico , Perros , Femenino , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Masculino , Pronóstico , Valores de Referencia , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA