Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cell Pediatr ; 10(1): 8, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624430

RESUMEN

BACKGROUND: Clinical studies suggest that female sex plays a protective role in the development and progression of kidney disease. Recent experimental studies indicate that in male rats early nephron loss under ongoing nephrogenesis is accompanied by severe long-term sequelae. In humans, nephron formation occurs mainly in the third trimester, ceasing with 36 weeks of gestation. Due to perinatal complications, preterm infants delivered during this vulnerable period may undergo acute nephron loss. In rats nephrogenesis persists until postnatal day 10, reflecting the situation of human preterms with persisting nephrogenesis. In our animal model of neonatal uninephrectomy, female and male rats were uninephrectomized at day 1 of life. Hypothesizing sex-dependent differences, long-term renal outcome was assessed after 1 year. RESULTS: In both sexes, neonatal uninephrectomy was not followed by arterial hypertension at 1 year of age. Compensatory weight gain and glomerular hypertrophy of the remaining kidney occurred in uninephrectomized female and male animals. Selected markers of interstitial inflammation and fibrosis were regulated sex-dependently. The expression of monocyte chemoattractant protein-1 was increased in females, while tubulointerstitial infiltration by M1 macrophages was significantly higher in males after neonatal uninephrectomy. Neonatally uninephrectomized male rats had more glomerulosclerosis and podocyte damage compared to females, which was assessed by a semiquantitative score and desmin staining. RT-PCR revealed that after neonatal uninephrectomy in the remaining contralateral kidney of female rats the expression of candidate genes of renal development and function, i.e., wt-1, nephrin, synaptopodin, gdnf, and itga8 was higher than in males. CONCLUSIONS: Based on these observations we conclude that female sex is protective in the long-term response of the kidney to acute nephron loss under active nephrogenesis.

2.
Front Physiol ; 14: 1208105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435301

RESUMEN

Introduction: We previously reported that malignant hypertension is associated with impaired capillary density of target organs. Here, we tested the hypothesis that stabilization of hypoxia-inducible factor (HIF) in a modified "preconditioning" approach prevents the development of malignant hypertension. To stabilize HIF, we employed pharmacological inhibition of HIF prolyl hydroxylases (PHD), that profoundly affect HIF metabolism. Methods: Two-kidney, one-clip renovascular hypertension (2K1C) was induced in rats; controls were sham operated. 2K1C rats received either intermittent injections of the PHD inhibitor ICA (2-(1-chloro-4-hydroxyisoquinoline-3-carboxamido) acetate) or placebo. Thirty-five days after clipping, the frequency of malignant hypertension was assessed (based on weight loss and the occurrence of characteristic vascular lesions). In addition, kidney injury was compared between all ICA treated versus all placebo treated 2K1C, regardless of the occurrence of malignant hypertension. HIF stabilization was evaluated by immunohistochemistry, and HIF target gene expression by RT-PCR. Results: Blood pressure was elevated to the same degree in ICA- and placebo-treated 2K1C compared to control rats. ICA treatment did not affect the frequency of malignant hypertension or the extent of kidney tissue fibrosis, inflammation, or capillary density. There was a trend towards higher mortality and worse kidney function in ICA-treated 2K1C rats. ICA increased the number of HIF-1α-positive renal tubular cell nuclei and induced several HIF-1 target genes. In contrast, expression of HIF-2α protein as well as HIF-2 target genes were markedly enhanced by 2K1C hypertension, irrespective of ICA treatment. Discussion: We conclude that intermittent PHD inhibition did not ameliorate severe renovascular hypertension in rats. We speculate that the unexpected strong renal accumulation of HIF-2α in renovascular hypertension, which could not be further augmented by ICA, may contribute to the lack of a benefit from PHD inhibition.

3.
Sci Rep ; 12(1): 9381, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672381

RESUMEN

Elevated plasma concentrations of asymmetric dimethylarginine (ADMA) are associated with an increased risk of mortality and adverse cardiovascular outcomes. ADMA can be metabolized by dimethylarginine dimethylaminohydrolases (DDAHs) and by alanine-glyoxylate aminotransferase 2 (AGXT2). Deletion of DDAH1 in mice leads to elevation of ADMA in plasma and increase in blood pressure, while overexpression of human DDAH1 is associated with a lower plasma ADMA concentration and protective cardiovascular effects. The possible role of alternative metabolism of ADMA by AGXT2 remains to be elucidated. The goal of the current study was to test the hypothesis that transgenic overexpression of AGXT2 leads to lowering of plasma levels of ADMA and protection from vascular damage in the setting of DDAH1 deficiency. We generated transgenic mice (TG) with ubiquitous overexpression of AGXT2. qPCR and Western Blot confirmed the expression of the transgene. Systemic ADMA levels were decreased by 15% in TG mice. In comparison with wild type animals plasma levels of asymmetric dimethylguanidino valeric acid (ADGV), the AGXT2 associated metabolite of ADMA, were six times higher. We crossed AGXT2 TG mice with DDAH1 knockout mice and observed that upregulation of AGXT2 lowers plasma ADMA and pulse pressure and protects the mice from endothelial dysfunction and adverse aortic remodeling. Upregulation of AGXT2 led to lowering of ADMA levels and protection from ADMA-induced vascular damage in the setting of DDAH1 deficiency. This is especially important, because all the efforts to develop pharmacological ADMA-lowering interventions by means of upregulation of DDAHs have been unsuccessful.


Asunto(s)
Arginina , Enfermedades Vasculares , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Aorta/metabolismo , Arginina/análogos & derivados , Arginina/metabolismo , Presión Sanguínea , Ratones , Transaminasas/genética , Transaminasas/metabolismo
4.
Physiol Genomics ; 53(12): 509-517, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34704838

RESUMEN

Preterm neonates are at a high risk for nephron loss under adverse clinical conditions. Renal damage potentially collides with postnatal nephrogenesis. Recent animal studies suggest that nephron loss within this vulnerable phase leads to renal damage later in life. Nephrogenic pathways are commonly reactivated after kidney injury supporting renal regeneration. We hypothesized that nephron loss during nephrogenesis affects renal development, which, in turn, impairs tissue repair after secondary injury. Neonates prior to 36 wk of gestation show an active nephrogenesis. In rats, nephrogenesis is ongoing until day 10 after birth. Mimicking the situation of severe nephron loss during nephrogenesis, male pups were uninephrectomized at day 1 of life (UNXd1). A second group of males was uninephrectomized at postnatal day 14 (UNXd14), after terminated nephrogenesis. Age-matched controls were sham operated. Three days after uninephrectomy transcriptional changes in the right kidney were analyzed by RNA-sequencing, followed by functional pathway analysis. In UNXd1, 1,182 genes were differentially regulated, but only 143 genes showed a regulation both in UNXd1 and UNXd14. The functional groups "renal development" and "kidney injury" were among the most differentially regulated groups and revealed distinctive alterations. Reduced expression of candidate genes concerning renal development (Bmp7, Gdnf, Pdgf-B, Wt1) and injury (nephrin, podocin, Tgf-ß1) were detected. The downregulation of Bmp7 and Gdnf persisted until day 28. In UNXd14, Six2 was upregulated and Pax2 was downregulated. We conclude that nephron loss during nephrogenesis affects renal development and induces a specific regulation of genes that might hinder tissue repair after secondary kidney injury.


Asunto(s)
Lesión Renal Aguda/genética , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica , Genes del Desarrollo , Nefronas/crecimiento & desarrollo , Nefronas/patología , Organogénesis/genética , Regulación hacia Arriba/genética , Animales , Animales Recién Nacidos/cirugía , Proteína Morfogenética Ósea 7/genética , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Proteínas de Homeodominio/genética , Masculino , Nefrectomía/métodos , Factor de Transcripción PAX2/genética , RNA-Seq/métodos , Ratas , Ratas Wistar , Transcriptoma/genética
5.
J Mol Med (Berl) ; 99(12): 1727-1740, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34528115

RESUMEN

In malignant hypertension, far more severe kidney injury occurs than in the "benign" form of the disease. The role of high blood pressure and the renin-angiotensin-aldosterone system is well recognized, but the pathogenesis of the renal injury of malignant hypertension (MH) remains incompletely understood. Using the rat model of two-kidney, one-clip renovascular hypertension in which some but not all animals develop MH, we performed a transcriptomic analysis of gene expression by RNA sequencing to identify transcriptional changes in the kidney cortex specific for MH. Differential gene expression was assessed in three groups: MH, non-malignant hypertension (NMH), and normotensive, sham-operated controls. To distinguish MH from NMH, we considered two factors: weight loss and typical renovascular lesions. Mean blood pressure measured intraarterially was elevated in MH (220 ± 6.5 mmHg) as well as in NMH (192 ± 6.4 mmHg), compared to controls (119 ± 1.7 mmHg, p < 0.05). Eight hundred eighty-six genes were exclusively regulated in MH only. Principal component analysis revealed a separated clustering of the three groups. The data pointed to an upregulation of many inflammatory mechanisms in MH including pathways which previously attracted relatively little attention in the setting of hypertensive kidney injury: Transcripts from all three complement activation pathways were upregulated in MH compared to NMH but not in NMH compared with controls; immunohistochemistry confirmed complement deposition in MH exclusively. The expression of chemokines attracting neutrophil granulocytes (CXCL6) and infiltration of myeloperoxidase-positive cells were increased only in MH rats. The data suggest that these pathways, especially complement deposition, may contribute to kidney injury under MH. KEY MESSAGES: The most severe hypertension-induced kidney injury occurs in malignant hypertension. In a rat model of malignant hypertension, we assessed transcriptional responses in the kidney exposed to high blood pressure. A broad stimulation of inflammatory mechanisms was observed, but a few specific pathways were activated only in the malignant form of the disease, notably activation of the complement cascades. Complement inhibitors may alleviate the thrombotic microangiopathy of malignant hypertension even in the absence of primary complement abnormalities.


Asunto(s)
Hipertensión Maligna/genética , Hipertensión Renovascular/genética , Animales , Proteínas del Sistema Complemento/metabolismo , Hipertensión Maligna/metabolismo , Hipertensión Renovascular/metabolismo , Riñón/metabolismo , Masculino , Ratas Sprague-Dawley , Análisis de Secuencia de ARN
6.
Pflugers Arch ; 473(10): 1617-1629, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34232378

RESUMEN

Previous data suggest that renal afferent nerve activity is increased in hypertension exerting sympathoexcitatory effects. Hence, we wanted to test the hypothesis that in renovascular hypertension, the activity of dorsal root ganglion (DRG) neurons with afferent projections from the kidneys is augmented depending on the degree of intrarenal inflammation. For comparison, a nonhypertensive model of mesangioproliferative nephritis was investigated. Renovascular hypertension (2-kidney, 1-clip [2K1C]) was induced by unilateral clipping of the left renal artery and mesangioproliferative glomerulonephritis (anti-Thy1.1) by IV injection of a 1.75-mg/kg BW OX-7 antibody. Neuronal labeling (dicarbocyanine dye [DiI]) in all rats allowed identification of renal afferent dorsal root ganglion (DRG) neurons. A current clamp was used to characterize neurons as tonic (sustained action potential [AP] firing) or phasic (1-4 AP) upon stimulation by current injection. All kidneys were investigated using standard morphological techniques. DRG neurons exhibited less often tonic response if in vivo axonal input from clipped kidneys was received (30.4% vs. 61.2% control, p < 0.05). However, if the nerves to the left clipped kidneys were cut 7 days prior to investigation, the number of tonic renal neurons completely recovered to well above control levels. Interestingly, electrophysiological properties of neurons that had in vivo axons from the right non-clipped kidneys were not distinguishable from controls. Renal DRG neurons from nephritic rats also showed less often tonic activity upon current injection (43.4% vs. 64.8% control, p < 0.05). Putative sympathoexcitatory and impaired sympathoinhibitory renal afferent nerve fibers probably contribute to increased sympathetic activity in 2K1C hypertension.


Asunto(s)
Vías Aferentes , Glomerulonefritis/inducido químicamente , Hipertensión Renovascular/fisiopatología , Riñón/inervación , Animales , Ganglios Espinales , Glomerulonefritis/clasificación , Glomerulonefritis/patología , Masculino , Ratas , Ratas Sprague-Dawley
7.
Biol Reprod ; 105(2): 449-463, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-33955453

RESUMEN

In humans, intrauterine growth restriction (IUGR) and preeclampsia (PE) are associated with induction of the unfolded protein response (UPR) and increased placental endoplasmic reticulum (ER) stress. Especially in PE, oxidative stress occurs relative to the severity of maternal vascular underperfusion (MVU) of the placental bed. On the premise that understanding the mechanisms of placental dysfunction could lead to targeted therapeutic options for human IUGR and PE, we investigated the roles of the placental UPR and oxidative stress in two rodent models of these human gestational pathologies. We employed a rat IUGR model of gestational maternal protein restriction, as well as an endothelial nitric oxide synthase knockout mouse model (eNOS-/-) of PE/IUGR. Placental expression of UPR members was analyzed via qRT-PCR (Grp78, Calnexin, Perk, Chop, Atf6, and Ern1), immunohistochemistry, and Western blotting (Calnexin, ATF6, GRP78, CHOP, phospho-eIF2α, and phospho-IRE1). Oxidative stress was determined via Western blotting (3-nitrotyrosine and 4-hydroxy-2-nonenal). Both animal models showed a significant reduction of fetal and placental weight. These effects did not induce placental UPR. In contrast to human data, results from our rodent models suggest retention of placental plasticity in the setting of ER stress under an adverse gestational environment. Oxidative stress was significantly increased only in female IUGR rat placentas, suggesting a sexually dimorphic response to maternal malnutrition. Our study advances understanding of the involvement of the placental UPR in IUGR and PE. Moreover, it emphasizes the appropriate choice of animal models researching various aspects of these pregnancy complications.


Asunto(s)
Estrés del Retículo Endoplásmico , Retardo del Crecimiento Fetal/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Respuesta de Proteína Desplegada , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Noqueados , Embarazo , Ratas , Ratas Wistar
8.
Am J Hypertens ; 33(4): 331-340, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31840157

RESUMEN

BACKGROUND: Interleukin-11 (IL-11) is a pleiotropic cytokine of the interleukin-6 family. Recent studies revealed its crucial role in the development of cardiovascular fibrosis. In this study we examined IL-11 expression levels in the heart and the kidney exposed to high blood pressure in renovascular hypertensive rats and their correlations to fibrotic markers and kidney injury. METHODS: Two-kidney, one-clip renovascular hypertension (2K1C) was induced in rats. IL-11 expression was measured by real-time polymerase chain reaction in the left ventricle and the right kidney. The correlation of cardiac IL-11 expression with biomarkers of renal fibrosis was assessed. We further investigated IL-11 expression in 2K1C rats grouped into rats with malignant vs. nonmalignant hypertension (distinguishing criteria: weight loss, number of fibrinoid necrosis, and onion skin lesions). RESULTS: Thirty-five days after clipping, mean arterial pressure was significantly increased in 2K1C. Renal IL-11 expression was elevated in 2K1C. In the heart there was only a trend toward higher IL-11 expression in 2K1C. IL-11 in the kidney in 2K1C correlated with the expression of transforming growth factor (TGF)-ß1/2, collagens, fibronectin, osteopontin, as well as tissue inhibitors of metalloprotease 1/2. There were also correlations of IL-11 with tissue collagen expansion, number of activated fibroblasts and serum creatinine, but no correlation with mean arterial pressure. Renal expression of IL-11 was highest in rats with malignant hypertension. CONCLUSIONS: Renal IL-11 expression of renovascular hypertensive rats is markedly increased and correlates with profibrotic markers and loss of function and might therefore serve as a biomarker for the severity of hypertensive nephrosclerosis.


Asunto(s)
Presión Arterial , Hipertensión Maligna/complicaciones , Hipertensión Renovascular/complicaciones , Interleucina-11/metabolismo , Enfermedades Renales/etiología , Riñón/metabolismo , Animales , Modelos Animales de Enfermedad , Fibrosis , Hipertensión Maligna/metabolismo , Hipertensión Maligna/patología , Hipertensión Maligna/fisiopatología , Hipertensión Renovascular/metabolismo , Hipertensión Renovascular/patología , Hipertensión Renovascular/fisiopatología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Interleucina-11/genética , Riñón/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/fisiopatología , Masculino , Miocardio/metabolismo , Miocardio/patología , Ratas Sprague-Dawley , Regulación hacia Arriba , Función Ventricular Izquierda , Remodelación Ventricular
9.
Int J Mol Sci ; 20(24)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835675

RESUMEN

Chemerin and its receptor, chemokine-like receptor 1 (CmklR1), are associated with chemotaxis, inflammation, and endothelial function, especially in metabolic syndrome, coronary heart disease, and hypertension. In humans, circulating chemerin levels and renal function show an inverse relation. So far, little is known about the potential role of chemerin in hypertensive nephropathy and renal inflammation. Therefore, we determined systemic and renal chemerin levels in 2-kidney-1-clip (2k1c) hypertensive and Thy1.1 nephritic rats, respectively, to explore the correlation between chemerin and markers of renal inflammation and fibrosis. Immunohistochemistry revealed a model-specific induction of chemerin expression at the corresponding site of renal damage (tubular vs. glomerular). In both models, renal expression of chemerin (RT-PCR, Western blot) was increased and correlated positively with markers of inflammation and fibrosis. In contrast, circulating chemerin levels remained unchanged. Taken together, these findings demonstrate that renal chemerin expression is associated with processes of inflammation and fibrosis-related to renal damage. However, its use as circulating biomarker of renal inflammation seems to be limited in our rat models.


Asunto(s)
Quimiocinas/metabolismo , Glomerulonefritis/metabolismo , Hipertensión Renal/metabolismo , Inflamación/metabolismo , Riñón/metabolismo , Riñón/patología , Nefritis/metabolismo , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Quimiocinas/sangre , Quimiocinas/genética , Colágeno Tipo IV/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Glomerulonefritis/complicaciones , Glomerulonefritis/patología , Hipertensión/sangre , Hipertensión/complicaciones , Hipertensión Renal/sangre , Hipertensión Renal/complicaciones , Hipertensión Renal/patología , Inflamación/sangre , Inflamación/patología , Riñón/lesiones , Macrófagos/patología , Nefritis/sangre , Nefritis/complicaciones , Nefritis/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-30915031

RESUMEN

Objectives: Placental steroid metabolism is linked to the fetal hypothalamus-pituitary-adrenal axis. Intrauterine growth restriction (IUGR) might alter this cross-talk and lead to maternal stress, in turn contributing to the pathogenesis of anxiety-related disorders of the offspring, which might be mediated by fetal overexposure to, or a reduced local enzymatic protection against maternal glucocorticoids. So far, direct evidence of altered levels of circulating/local glucocorticoids is scarce. Liquid chromatography tandem-mass spectrometry (LC-MS/MS) allows quantitative endocrine assessment of blood and tissue. Using a rat model of maternal protein restriction (low protein [LP] vs. normal protein [NP]) to induce IUGR, we analyzed fetal and maternal steroid levels via LC-MS/MS along with the local expression of 11beta-hydroxysteroid-dehydrogenase (Hsd11b). Methods: Pregnant Wistar dams were fed a low protein (8%, LP; IUGR) or an isocaloric normal protein diet (17%, NP; controls). At E18.5, the expression of Hsd11b1 and 2 was determined by RT-PCR in fetal placenta and brain. Steroid profiling of maternal and fetal whole blood, fetal brain, and placenta was performed via LC-MS/MS. Results: In animals with LP-induced reduced body (p < 0.001) and placental weights (p < 0.05) we did not observe any difference in the expressional Hsd11b1/2-ratio in brain or placenta. Moreover, LP diet did not alter corticosterone (Cort) or 11-dehydrocorticosterone (DH-Cort) levels in dams, while fetal whole blood levels of Cort were significantly lower in the LP group (p < 0.001) and concomitantly in LP brain (p = 0.003) and LP placenta (p = 0.002). Maternal and fetal progesterone levels (whole blood and tissue) were not influenced by LP diet. Conclusion: Various rat models of intrauterine stress show profound alterations in placental Hsd11b2 gatekeeper function and fetal overexposure to corticosterone. In contrast, LP diet in our model induced IUGR without altering maternal steroid levels or placental enzymatic glucocorticoid barrier function. In fact, IUGR offspring showed significantly reduced levels of circulating and local corticosterone. Thus, our LP model might not represent a genuine model of intrauterine stress. Hypothetically, the observed changes might reflect a fetal attempt to maintain anabolic conditions in the light of protein restriction to sustain regular brain development. This may contribute to fetal origins of later neurodevelopmental sequelae.

11.
Int J Mol Sci ; 21(1)2019 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-31905805

RESUMEN

In humans, retinoic acid receptor responders (RARRES) have been shown to be altered in third trimester placentas complicated by the pathologies preeclampsia (PE) and PE with intrauterine growth restriction (IUGR). Currently, little is known about the role of placental Rarres in rodents. Therefore, we examined the localization and expression of Rarres1 and 2 in placentas obtained from a Wistar rat model of isocaloric maternal protein restriction (E18.5, IUGR-like features) and from an eNOS-knockout mouse model (E15 and E18.5, PE-like features). In both rodent models, Rarres1 and 2 were mainly localized in the placental spongiotrophoblast and giant cells. Their placental expression, as well as the expression of the Rarres2 receptor chemokine-like receptor 1 (CmklR1), was largely unaltered at the examined gestational ages in both animal models. Our results have shown that RARRES1 and 2 may have different expression and roles in human and rodent placentas, thereby underlining immanent limitations of comparative interspecies placentology. Further functional studies are required to elucidate the potential involvement of these proteins in early placentogenesis.


Asunto(s)
Quimiocinas/metabolismo , Retardo del Crecimiento Fetal/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Placenta/metabolismo , Animales , Quimiocinas/genética , Femenino , Interleucina-11/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Placenta/citología , Preeclampsia/metabolismo , Embarazo , Ratas , Ratas Wistar , Receptores de Quimiocina/metabolismo , Receptores de Ácido Retinoico/metabolismo , Trofoblastos/metabolismo
12.
Sci Rep ; 8(1): 4542, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540722

RESUMEN

Neonatal nephron loss may follow hypoxic-ischemic events or nephrotoxic medications. Its long-term effects on the kidney are still unclear. Unlike term infants, preterm neonates less than 36 weeks gestational age show ongoing nephrogenesis. We hypothesized that nephron loss during nephrogenesis leads to more severe renal sequelae than nephron loss shortly after the completion of nephrogenesis. Rats show nephrogenesis until day 10 of life resembling the situation of preterm infants. Animals were uninephrectomized at day 1 (UNX d1) resulting in nephron reduction during nephrogenesis and at day 14 of life (UNX d14) inducing nephron loss after the completion of nephrogenesis. 28 days after uninephrectomy the compensatory renal growth was higher in UNX d1 compared to UNX d14. Nephrin was reduced and collagen deposition increased in UNX d1. At 1 year of age, glomerulosclerosis and markers of tubulointerstitial damage were most prevalent in UNX d1. Moreover, the number of desmin-positive podocytes was higher and nephrin was reduced in UNX d1 indicating podocyte damage. Infiltration of inflammatory cells was heightened after UNX d1. Uninephrectomized animals showed no arterial hypertension. We conclude that neonatal nephron loss during active nephrogenesis leads to more severe glomerular and tubulointerstitial damage, which is not a consequence of compensatory arterial hypertension.


Asunto(s)
Colágeno/metabolismo , Desmina/metabolismo , Enfermedades Renales/etiología , Proteínas de la Membrana/metabolismo , Nefronas/cirugía , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Nefrectomía , Nefronas/metabolismo , Nefronas/patología , Organogénesis , Ratas , Ratas Wistar
13.
Kidney Blood Press Res ; 43(1): 1-11, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29393223

RESUMEN

BACKGROUND/AIMS: One potential pathomechanism how low nephron number leads to hypertension in later life is altered salt handling. We therefore evaluated changes in electrolyte and water content in wildtype (wt) and GDNF+/- mice with a 30% reduction of nephron number. METHODS: 32 GDNF+/- and 36 wt mice were fed with low salt (LSD, 0.03%, normal drinking water) or high salt (HSD, 4%, 0.9% drinking water) diet for 4 weeks. Blood pressure was continuously measured by telemetry in a subgroup. At the end of the experiment and after standardized ashing processes electrolyte- and water contents of the skin and the total body were determined. RESULTS: We found higher blood pressure in high salt treated GDNF+/-compared to wt mice. Of interest, we could not confirm an increase in total-body sodium as predicted by prevailing explanations, but found increased total body and skin chloride that interestingly correlated with relative kidney weight. CONCLUSION: We hereby firstly report significant total body and skin chloride retention in salt sensitive hypertension of GDNF+/-mice with genetically determined lower nephron number. Thus, in contrast to the prevailing opinion our data argue for the involvement of non-volume related mechanisms.


Asunto(s)
Cloruros/metabolismo , Hipertensión/etiología , Nefronas , Animales , Cloruros/análisis , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Riñón/fisiología , Ratones , Tamaño de los Órganos , Sodio/análisis , Cloruro de Sodio Dietético
14.
FASEB J ; 31(11): 4971-4984, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28760743

RESUMEN

Recently we identified hypoxia-inducible protein 2 (HIG2)/hypoxia-inducible lipid droplet-associated (HILPDA) as lipid droplet (LD) protein. Because HILPDA is highly expressed in atherosclerotic plaques, we examined its regulation and function in murine macrophages, compared it to the LD adipose differentiation-related protein (Adrp)/perilipin 2 (Plin2), and investigated its effects on atherogenesis in apolipoprotein E-deficient (ApoE-/-) mice. Tie2-Cre-driven Hilpda conditional knockout (cKO) did not affect viability, proliferation, and ATP levels in macrophages. Hilpda proved to be a target of hypoxia-inducible factor 1 (Hif-1) and peroxisome proliferator-activated receptors. In contrast, Adrp/Plin2 was not induced by Hif-1. Hilpda localized to the endoplasmic reticulum-LD interface, the site of LD formation. Hypoxic lipid accumulation and storage of oxidized LDL, cholesteryl esters and triglycerides were abolished in Hilpda cKO macrophages, independent of the glycolytic switch, fatty acid or lipoprotein uptake. Hilpda depletion reduced resistance against lipid overload and increased production of reactive oxygen species after reoxygenation. LPS-stimulated prostaglandin-E2 production was dysregulated in macrophages, demonstrating the substrate buffer and reservoir function of LDs for eicosanoid production. In ApoE-/- Hilpda cKO mice, total aortic plaque area, plaque macrophages and vascular Vegf expression were reduced. Thus, macrophage Hilpda is crucial to foam-cell formation and lipid deposition, and to controlled prostaglandin-E2 production. By these means Hilpda promotes lesion formation and progression of atherosclerosis.-Maier, A., Wu, H., Cordasic, N., Oefner, P., Dietel, B., Thiele, C., Weidemann, A., Eckardt, K.-U., Warnecke, C. Hypoxia-inducible protein 2 Hig2/Hilpda mediates neutral lipid accumulation in macrophages and contributes to atherosclerosis in apolipoprotein E-deficient mice.


Asunto(s)
Aterosclerosis/metabolismo , Células Espumosas/metabolismo , Metabolismo de los Lípidos , Proteínas de Neoplasias/metabolismo , Placa Aterosclerótica/metabolismo , Animales , Apolipoproteínas E/deficiencia , Aterosclerosis/genética , Aterosclerosis/patología , Dinoprostona/genética , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Femenino , Células Espumosas/patología , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Perilipina-2/genética , Perilipina-2/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patología , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genética
15.
Biol Sex Differ ; 8: 19, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28572914

RESUMEN

BACKGROUND: Apoe-deficient (Apoe-/-) mice develop progressive atherosclerotic lesions with age but no severe renal pathology in the absence of additional challenges. We recently described accelerated atherosclerosis as well as marked renal injury in Apoe-/- mice deficient in the mesenchymal integrin chain Itga8 (Itga8-/-). Here, we used this Apoe-/-, Itga8-/- mouse model to investigate the sex differences in the development of atherosclerosis and concomitant renal injury. We hypothesized that aging female mice are protected from vascular and renal damage in this mouse model. METHODS: Apoe-/- mice were backcrossed with Itga8-/- mice. Mice were kept on a normal diet. At the age of 12 months, the aortae and kidneys of male and female Apoe-/-Itga8+/+ mice or Apoe-/-Itga8-/- mice were studied. En face preparations of the aorta were stained with Sudan IV (lipid deposition) or von Kossa (calcification). In kidney tissue, immunostaining for collagen IV, CD3, F4/80, and PCNA and real-time PCR analyses for Il6, Vegfa, Col1a1 (collagen I), and Ssp1 (secreted phosphoprotein 1, synonym osteopontin) as well as ER stress markers were performed. RESULTS: When compared to male mice, Apoe-/-Itga8+/+ female mice had a lower body weight, equal serum cholesterol levels, and lower triglyceride levels. However, female mice had increased aortic lipid deposition and more aortic calcifications than males. Male Apoe-/- mice with the additional deficiency of Itga8 developed increased serum urea, glomerulosclerosis, renal immune cell infiltration, and reduced glomerular cell proliferation. In females of the same genotype, these renal changes were less pronounced and were accompanied by lower expression of interleukin-6 and collagen I, while osteopontin expression was higher and markers of ER stress were not different. CONCLUSIONS: In this model of atherosclerosis, the female sex is a risk factor to develop more severe atherosclerotic lesions, even though serum fat levels are higher in males. In contrast, female mice are protected from renal damage, which is accompanied by attenuated inflammation and matrix deposition. Thus, sex affects vascular and renal injury in a differential manner.


Asunto(s)
Apolipoproteínas E/genética , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Cadenas alfa de Integrinas/genética , Riñón/patología , Caracteres Sexuales , Animales , Aorta Torácica/patología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Femenino , Inflamación/fisiopatología , Riñón/metabolismo , Riñón/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , ARN Mensajero/metabolismo
16.
Physiol Genomics ; 49(4): 230-237, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28213570

RESUMEN

Chronic kidney disease (CKD) is associated with increased cardiovascular morbidity and mortality. Previous studies indicated an impairment of ischemia-induced angiogenesis in skeletal muscle of rats with CKD. We performed a systematic comparison of early gene expression in response to ischemia in rats with or without CKD to identify potential molecular mechanisms underlying impaired angiogenesis in CKD. CKD was induced in male rats by 5/6 nephrectomy (SNX); control rats were sham operated (sham). Eight weeks later, ischemia of the right limb was induced by ligation and resection of the femoral artery. Rats were killed 24 h after the onset of ischemia, and RNA was extracted from the musculus soleus of the ischemic and the nonischemic hindlimb. To identify differentially expressed transcripts, we analyzed RNA with Affymetrix GeneChip Rat Genome 230 2.0 Arrays. RT-PCR analysis of selected genes was performed to validate observed changes. Hindlimb ischemia upregulated 239 genes in CKD and 299 genes in control rats (66% overlap), whereas only a few genes were downregulated (14 in CKD and 34 in controls) compared with the nonischemic limb of the same animals. Comparison between the ischemic limbs of CKD and controls revealed downregulation of 65 genes in CKD; 37 of these genes were also among the ischemia-induced genes in controls. Analysis of functional groups (other than angiogenesis) pointed to genes involved in leukocyte recruitment and fatty acid metabolism. Transcript expression profiling points to a relatively small number of differentially expressed genes that may underlie the impaired postischemic angiogenesis in CKD.


Asunto(s)
Isquemia/genética , Isquemia/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Animales , Modelos Animales de Enfermedad , Isquemia/metabolismo , Masculino , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Ratas , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Steroids ; 120: 1-6, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28189541

RESUMEN

INTRODUCTION: Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) allows for the direct analysis of multiple hormones in a single probe with minimal sample volume. Rodent-based animal studies strongly rely on microsampling, such as the dry blood spot (DBS) method. However, DBS suffers the drawback of hematocrit-dependence (non-volumetric). Hence, novel volumetric microsampling techniques were introduced recently, allowing sampling of fixed accurate volumes. We compared these methods for steroid analysis in the rat to improve inter-system comparability. EXPERIMENTAL: We analyzed steroid levels in blood using the absorptive microsampling devices Whatman® 903 Protein Saver Cards, Noviplex™ Plasma Prep Cards and the Mitra™ Microsampling device and compared the obtained results to the respective EDTA plasma levels. Quantitative steroid analysis was performed via LC-MS/MS. For the determination of the plasma volume factor for each steroid, their levels in pooled blood samples from each human adults and rats (18weeks) were compared and the transferability of these factors was evaluated in a new set of juvenile (21days) and adult (18weeks) rats. Hematocrit was determined concomitantly. RESULTS: Using these approaches, we were unable to apply one single volume factor for each steroid. Instead, plasma volume factors had to be adjusted for the recovery rate of each steroid and device individually. The tested microsampling systems did not allow the use of one single volume factor for adult and juvenile rats based on an unexpectedly strong hematocrit-dependency and other steroid specific (pre-analytic) factors. DISCUSSION: Our study provides correction factors for LC-MS/MS steroid analysis of volumetric and non-volumetric microsampling systems in comparison to plasma. It argues for thorough analysis of chromatographic effects before the use of novel volumetric systems for steroid analysis.


Asunto(s)
Cromatografía Liquida/métodos , Esteroides/sangre , Espectrometría de Masas en Tándem/métodos , Animales , Pruebas con Sangre Seca , Hematócrito , Humanos , Masculino , Ratas , Ratas Wistar , Manejo de Especímenes
18.
Kidney Int ; 91(3): 616-627, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27927598

RESUMEN

Chronic kidney disease (CKD) is associated with increased risk and worse prognosis of cardiovascular disease, including peripheral artery disease. An impaired angiogenic response to ischemia may contribute to poor outcomes of peripheral artery disease in patients with CKD. Hypoxia inducible factors (HIF) are master regulators of angiogenesis and therefore represent a promising target for therapeutic intervention. To test this we induced hind-limb ischemia in rats with CKD caused by 5/6 nephrectomy and administered two different treatments known to stabilize HIF protein in vivo: carbon monoxide and a pharmacological inhibitor of prolyl hydroxylation 2-(1-chloro-4- hydroxyisoquinoline-3-carboxamido) acetate (ICA). Expression levels of pro-angiogenic HIF target genes (Vegf, Vegf-r1, Vegf-r2, Ho-1) were measured by qRT-PCR. Capillary density was measured by CD31 immunofluorescence staining and HIF expression was evaluated by immunohistochemistry. Capillary density in ischemic skeletal muscle was significantly lower in CKD animals compared to sham controls. Rats with CKD showed significantly lower expression of HIF and all measured pro-angiogenic HIF target genes, including VEGF. Both HIF stabilizing treatments rescued HIF target gene expression in animals with CKD and led to significantly higher ischemia-induced capillary sprouting compared to untreated controls. ICA was effective regardless of whether it was administered before or after induction of ischemia and led to a HIF expression in skeletal muscle. Thus, impaired ischemia-induced angiogenesis in rats with CKD can be improved by HIF stabilization, even if started after onset of ischemia.


Asunto(s)
Capilares/efectos de los fármacos , Monóxido de Carbono/farmacología , Glicina/análogos & derivados , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isquemia/tratamiento farmacológico , Isoquinolinas/farmacología , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica/efectos de los fármacos , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Capilares/metabolismo , Capilares/fisiopatología , Línea Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Glicina/farmacología , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Miembro Posterior , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatología , Masculino , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Estabilidad Proteica , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/fisiopatología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
19.
Front Physiol ; 7: 370, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27625610

RESUMEN

Malignant hypertension develops in some cases of hypertension but not in others. We hypothesized that an impaired neovascularization and a reduced capillary supply characterizes the malignant course of experimental hypertension. Two-kidney, one-clip renovascular hypertension was induced in rats; controls (sham) were sham operated. To distinguish malignant hypertension from non-malignant hypertension, we considered two factors: weight loss, and the number of typical vascular lesions (onion skin lesions and fibrinoid necroses) per kidney section of the nonclipped kidney. Animals in the upper half for both criteria were defined as malignant hypertensives. After 5 weeks, mean arterial blood pressure was elevated to the same degree in malignant hypertension and non-malignant hypertension whereas plasma renin and aldosterone were significantly higher in malignant hypertensives. The expression of plasminogen activator inhibitor-1 was elevated (up to 14-fold) in non-malignant but significantly more increased (up to 36-fold) in malignant hypertensive rats, compared to sham. As a bioassay for neovascularization, the area of granulation tissue ingrowth in polyvinyl discs (implanted subcutaneously) was reduced in malignant hypertension compared to non-malignant hypertension and sham, while there was no difference between non-malignant hypertension and sham. The number of renal and left ventricular capillaries was significantly lower in malignant hypertension compared to non-malignant hypertension, as was the number of proliferating endothelial cells. We conclude that an impaired neovascularization and capillarization occurs in malignant renovascular hypertension but not in the non-malignant course of the disease despite comparable blood pressure levels. This might contribute to the unique vascular lesions and progressive target organ damage observed in malignant hypertension.

20.
PLoS One ; 11(3): e0150471, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26938996

RESUMEN

The α8 integrin (Itga8) chain contributes to the regulation of cell proliferation and apoptosis in renal glomerular cells. In unilateral ureteral obstruction Itga8 is de novo expressed in the tubulointerstitium and a deficiency of Itga8 results in more severe renal fibrosis after unilateral ureteral obstruction. We hypothesized that the increased tubulointerstitial damage after unilateral ureteral obstruction observed in mice deficient for Itga8 is associated with altered tubulointerstitial cell turnover and apoptotic mechanisms resulting from the lack of Itga8 in cells of the tubulointerstitium. Induction of unilateral ureteral obstruction was achieved by ligation of the right ureter in mice lacking Itga8. Unilateral ureteral obstruction increased proliferation and apoptosis rates of tubuloepithelial and interstitial cells, however, no differences were observed in the tubulointerstitium of mice lacking Itga8 and wild type controls regarding fibroblast or proliferating cell numbers as well as markers of endoplasmic reticulum stress and apoptosis after unilateral ureteral obstruction. In contrast, unilateral ureteral obstruction in mice lacking Itga8 led to more pronounced tubulointerstitial cell activation i.e. to the appearance of more phospho-SMAD2/3-positive cells and more α-smooth muscle actin-positive cells in the tubulointerstitium. Furthermore, a more severe macrophage and T-cell infiltration was observed in these animals compared to controls. Thus, Itga8 seems to attenuate tubulointerstitial fibrosis in unilateral ureteral obstruction not via regulation of cell turnover, but via regulation of TGF-ß signalling, fibroblast activation and/or immune cell infiltration.


Asunto(s)
Fibroblastos/metabolismo , Regulación de la Expresión Génica , Cadenas alfa de Integrinas/genética , Cadenas alfa de Integrinas/metabolismo , Túbulos Renales/patología , Animales , Apoptosis , Proliferación Celular , Retículo Endoplásmico/metabolismo , Fibrosis/patología , Homocigoto , Inflamación , Proteínas Inhibidoras de la Apoptosis/metabolismo , Corteza Renal/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Represoras/metabolismo , Transducción de Señal , Survivin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...