Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J R Soc Interface ; 19(196): 20220541, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36448288

RESUMEN

Quantum computing holds substantial potential for applications in biology and medicine, spanning from the simulation of biomolecules to machine learning methods for subtyping cancers on the basis of clinical features. This potential is encapsulated by the concept of a quantum advantage, which is contingent on a reduction in the consumption of a computational resource, such as time, space or data. Here, we distill the concept of a quantum advantage into a simple framework to aid researchers in biology and medicine pursuing the development of quantum applications. We then apply this framework to a wide variety of computational problems relevant to these domains in an effort to (i) assess the potential of practical advantages in specific application areas and (ii) identify gaps that may be addressed with novel quantum approaches. In doing so, we provide an extensive survey of the intersection of biology and medicine with the current landscape of quantum algorithms and their potential advantages. While we endeavour to identify specific computational problems that may admit practical advantages throughout this work, the rapid pace of change in the fields of quantum computing, classical algorithms and biological research implies that this intersection will remain highly dynamic for the foreseeable future.


Asunto(s)
Metodologías Computacionales , Teoría Cuántica , Simulación por Computador , Algoritmos , Biología
2.
PLoS One ; 14(10): e0223639, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31596908

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) remains a morbid disease with poor prognosis and treatment that typically leaves patients with permanent damage to critical functions such as eating and talking. Currently only three targeted therapies are FDA approved for use in HNSCC, two of which are recently approved immunotherapies. In this work, we identify biological pathways involved with this disease that could potentially be targeted by current FDA approved cancer drugs and thereby expand the pool of potential therapies for use in HNSCC treatment. We analyzed 508 HNSCC patients with sequencing information from the Genomic Data Commons (GDC) database and assessed which biological pathways were significantly enriched for somatic mutations or copy number alterations. We then further classified pathways as either "light" or "dark" to the current reach of FDA-approved cancer drugs using the Cancer Targetome, a compendium of drug-target information. Light pathways are statistically enriched with somatic mutations (or copy number alterations) and contain one or more targets of current FDA-approved cancer drugs, while dark pathways are enriched with somatic mutations (or copy number alterations) but not currently targeted by FDA-approved cancer drugs. Our analyses indicated that approximately 35-38% of disease-specific pathways are in scope for repurposing of current cancer drugs. We further assess light and dark pathways for subgroups of patient tumor samples according to HPV status. The framework of light and dark pathways for HNSCC-enriched biological pathways allows us to better prioritize targeted therapies for further research in HNSCC based on the HNSCC genetic landscape and FDA-approved cancer drug information. We also highlight the importance in the identification of sub-pathways where targeting and cross targeting of other pathways may be most beneficial to predict positive or negative synergy with potential clinical significance. This framework is ideal for precision drug panel development, as well as identification of highly aberrant, untargeted candidates for future drug development.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Células Escamosas/genética , Neoplasias de Cabeza y Cuello/genética , Terapia Molecular Dirigida/métodos , Mutación , Carcinoma de Células Escamosas/tratamiento farmacológico , Evolución Clonal , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Humanos , Redes y Vías Metabólicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...