Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 757: 110046, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815782

RESUMEN

To date, Rett syndrome (RTT), a genetic disorder mainly caused by mutations in the X-linked MECP2 gene, is increasingly considered a broad-spectrum pathology, instead of just a neurodevelopmental disease, due to the multitude of peripheral co-morbidities and the compromised metabolic pathways, affecting the patients. The altered molecular processes include an impaired mitochondrial function, a perturbed redox homeostasis, a chronic subclinical inflammation and an improper cholesterol metabolism. The persistent subclinical inflammatory condition was first defined ten years ago, as a previously unrecognized feature of RTT, playing a role in the pathology progress and modulation of phenotypical severity. In light of this, the present work aims at reviewing the current knowledge on the chronic inflammatory status and the altered immune/inflammatory functions in RTT, as well as investigating the emerging mechanisms underlying this condition with a special focus on the latest findings about inflammasome system, autoimmunity responses and intestinal micro- and mycobiota. On these bases, although further research is needed, future therapeutic strategies able to re-establish an adequate immune/inflammatory response could represent potential approaches for RTT patients.


Asunto(s)
Inflamación , Síndrome de Rett , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/inmunología , Humanos , Inflamación/metabolismo , Inflamasomas/metabolismo , Inflamasomas/inmunología , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Animales , Microbioma Gastrointestinal
2.
Free Radic Biol Med ; 207: 161-177, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37442280

RESUMEN

Neuroinflammation plays a crucial role in the onset and the progression of several neuropathologies, from neurodegenerative disorders to migraine, from Rett syndrome to post-COVID 19 neurological manifestations. Inflammasomes are cytosolic multiprotein complexes of the innate immune system that fuel inflammation. They have been under study for the last twenty years and more recently their involvement in neuro-related conditions has been of great interest as possible therapeutic target. The role of oxidative stress in inflammasome activation has been described, however the exact way of action of specific endogenous and exogenous oxidants needs to be better clarified. In this review, we provide the current knowledge on the involvement of inflammasome in the main neuropathologies, emphasizing the importance to further clarify the role of oxidative stress in its activation including the role of mitochondria in inflammasome-induced neuroinflammation.


Asunto(s)
COVID-19 , Enfermedades Neurodegenerativas , Humanos , Inflamasomas , Enfermedades Neuroinflamatorias , Inflamación , Proteína con Dominio Pirina 3 de la Familia NLR
3.
Redox Biol ; 56: 102440, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36027676

RESUMEN

NLRP1 is one of the major inflammasomes modulating the cutaneous inflammatory responses and therefore linked to a variety of cutaneous conditions. Although NLRP1 has been the first inflammasome to be discovered, only in the past years a significant progress was achieved in understanding the molecular mechanism and the stimuli behind its activation. In the past decades a crescent number of studies have highlighted the role of air pollutants as Particulate Matter (PM), Cigarette Smoke (CS) and Ozone (O3) as trigger stimuli for inflammasomes activation, especially via Reactive Oxygen Species (ROS) mediators. However, whether NLRP1 can be modulated by air pollutants via oxidative stress and the mechanism behind its activation is still poorly understood. Here we report for the first time that O3, one of the most toxic pollutants, activates the NLRP1 inflammasome in human keratinocytes via oxidative stress mediators as hydrogen peroxide (H2O2) and 4-hydroxy-nonenal (4HNE). Our data suggest that NLRP1 represents a target protein for 4HNE adduction that possibly leads to its proteasomal degradation and activation via the possible involvement of E3 ubiquitin ligase UBR2. Of note, Catalase (Cat) treatment prevented inflammasome assemble and inflammatory cytokines release as well as NLRP1 ubiquitination in human keratinocytes upon O3 exposure. The present work is a mechanistic study that follows our previous work where we have showed the ability of O3 to induce cutaneous inflammasome activation in humans exposed to this pollutant. In conclusion, our results suggest that O3 triggers the cutaneous NLRP1 inflammasome activation by ubiquitination and redox mechanism.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Ozono , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Catalasa/metabolismo , Citocinas/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Inflamasomas/metabolismo , Proteínas NLR/metabolismo , Oxidación-Reducción , Ozono/metabolismo , Material Particulado , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
Free Radic Biol Med ; 181: 1-13, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35085773

RESUMEN

Rett syndrome (RTT), a devastating neurodevelopmental disorder, is caused in 95% of the cases by mutations in the X-chromosome-localized MECP2 gene. To date, RTT is considered a broad-spectrum disease, due to multisystem disturbances affecting patients, associated with mitochondrial dysfunctions, subclinical inflammation and an overall OxInflammatory status. Inflammasomes are multi-protein complexes crucially involved in innate immune responses against pathogens and oxidative stress mediators. The assembly of NLRP3:ASC inflammasome lead to pro-caspase 1 activation, maturation of interleukins (IL)-1ß and 18 and proteolytic cleavage of Gasdermin D leading eventually to pyroptosis and systemic inflammation. The possible de-regulation of this system, in parallel with upstream nuclear factor (NF)-κB p65 pathway, were analyzed in peripheral blood mononuclear cells (PBMCs) and plasma isolated from RTT patients and matching controls. RTT PBMCs showed a constitutive activation of the axis TLR4 (Toll-like receptor 4)-IRAK1 (interleukin-1 receptor associated kinase 1)-NF-κB p65, together with augmented ROS generation and enhanced IL-18 mRNA levels and NLRP3:ASC co-localization. The deregulation of inflammasome components was even found in THP-1 cells silenced for MECP2 and importantly, in plasma compartment of RTT subjects, from the earliest stages of the pathology or in correlation with the severity of MeCP2 mutations. Taken together, these data provide new insights into the mechanisms involved in RTT sub-clinical inflammatory status present in RTT patients, thus helping to reveal new targets for future therapeutic approaches.


Asunto(s)
Inflamasomas , Síndrome de Rett , Humanos , Inflamasomas/genética , Inflamasomas/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Leucocitos Mononucleares/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Receptor Toll-Like 4/genética
5.
Life (Basel) ; 11(6)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205017

RESUMEN

Rett syndrome (RTT) is a monogenic neurodevelopmental disorder primarily caused by mutations in X-linked MECP2 gene, encoding for methyl-CpG binding protein 2 (MeCP2), a multifaceted modulator of gene expression and chromatin organization. Based on the type of mutation, RTT patients exhibit a broad spectrum of clinical phenotypes with various degrees of severity. In addition, as a complex multisystem disease, RTT shows several clinical manifestations ranging from neurological to non-neurological symptoms. The most common non-neurological comorbidities include, among others, orthopedic complications, mainly scoliosis but also early osteopenia/osteoporosis and a high frequency of fractures. A characteristic low bone mineral density dependent on a slow rate of bone formation due to dysfunctional osteoblast activity rather than an increase in bone resorption is at the root of these complications. Evidence from human and animal studies supports the idea that MECP2 mutation could be associated with altered epigenetic regulation of bone-related factors and signaling pathways, including SFRP4/WNT/ß-catenin axis and RANKL/RANK/OPG system. More research is needed to better understand the role of MeCP2 in bone homeostasis. Indeed, uncovering the molecular mechanisms underlying RTT bone problems could reveal new potential pharmacological targets for the treatment of these complications that adversely affect the quality of life of RTT patients for whom the only therapeutic approaches currently available include bisphosphonates, dietary supplements, and physical activity.

6.
FASEB J ; 35(6): e21662, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34046935

RESUMEN

Human umbilical cord endothelial cells (HUVECs) obtained from women affected by gestational diabetes (GD-HUVECs) display durable pro-atherogenic modifications and might be considered a valid in vitro model for studying chronic hyperglycemia effects on early endothelial senescence. Here, we demonstrated that GD- compared to C-HUVECs (controls) exhibited oxidative stress, altered both mitochondrial membrane potential and antioxidant response, significant increase of senescent cells characterized by a reduced NAD-dependent deacetylase sirtuin-1 (SIRT1) activity together with an increase in cyclin-dependent kinase inhibitor-2A (P16), cyclin-dependent kinase inhibitor-1 (P21), and tumor protein p53 (P53) acetylation. This was associated with the p300 activation, and its silencing significantly reduced the GD-HUVECs increased protein levels of P300 and Ac-P53 thus indicating a persistent endothelial senescence via SIRT1/P300/P53/P21 pathway. Overall, our data suggest that GD-HUVECs can represent an "endothelial hyperglycemic memory" model to investigate in vitro the early endothelium senescence in cells chronically exposed to hyperglycemia in vivo.


Asunto(s)
Antioxidantes/metabolismo , Senescencia Celular , Diabetes Gestacional/fisiopatología , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/patología , Modelos Biológicos , Estrés Oxidativo , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Técnicas In Vitro , Embarazo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Arch Biochem Biophys ; 700: 108790, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33549528

RESUMEN

Rett Syndrome (RTT) is a rare neurodevelopmental disorder caused in the 95% of cases by mutations in the X-linked MECP2 gene, affecting almost exclusively females. While the genetic basis of RTT is known, the exact pathogenic mechanisms that lead to the broad spectrum of symptoms still remain enigmatic. Alterations in the redox homeostasis have been proposed among the contributing factors to the development and progression of the syndrome. Mitochondria appears to play a central role in RTT oxidative damage and a plethora of mitochondrial defects has already been recognized. However, mitochondrial dynamics and mitophagy, which represent critical pathways in regulating mitochondrial quality control (QC), have not yet been investigated in RTT. The present work showed that RTT fibroblasts have networks of hyperfused mitochondria with morphological abnormalities and increased mitochondrial volume. Moreover, analysis of mitophagic flux revealed an impaired PINK1/Parkin-mediated mitochondrial removal associated with an increase of mitochondrial fusion proteins Mitofusins 1 and 2 (MFN1 and 2) and a decrease of fission mediators including Dynamin related protein 1 (DRP1) and Mitochondrial fission 1 protein (FIS1). Finally, challenging RTT fibroblasts with FCCP and 2,4-DNP did not trigger a proper apoptotic cell death due to a defective caspase 3/7 activation. Altogether, our findings shed light on new aspects of mitochondrial dysfunction in RTT that are represented by defective mitochondrial QC pathways, also providing new potential targets for a therapeutic intervention aimed at slowing down clinical course and manifestations in the affected patients.


Asunto(s)
Apoptosis , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Mitofagia , Síndrome de Rett/metabolismo , Adolescente , Adulto , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 7/genética , Caspasa 7/metabolismo , Niño , Dinaminas/genética , Dinaminas/metabolismo , Femenino , Fibroblastos/patología , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Síndrome de Rett/genética , Síndrome de Rett/patología
8.
Arch Biochem Biophys ; 696: 108660, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33159892

RESUMEN

Rett syndrome (RTT) is a progressive neurodevelopmental disorder caused by mutations in the X-linked MECP2 gene. RTT patients show multisystem disturbances associated with perturbed redox homeostasis and inflammation, which appear as possible key factors in RTT pathogenesis. In this study, using primary dermal fibroblasts from control and RTT subjects, we performed a proteomic analysis that, together with data mining approaches, allowed us to carry out a comprehensive characterization of RTT cellular proteome. Functional and pathway enrichment analyses showed that differentially expressed proteins in RTT were mainly enriched in biological processes related to immune/inflammatory responses. Overall, by using proteomic data mining as supportive approach, our results provide a detailed insight into the molecular pathways involved in RTT immune dysfunction that, causing tissue and organ damage, can increase the vulnerability of affected patients to unknown endogenous factors or infections.


Asunto(s)
Inflamación/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Síndrome de Rett/metabolismo , Adulto , Femenino , Fibroblastos/química , Humanos , Inflamación/complicaciones , Mapas de Interacción de Proteínas , Proteómica , Síndrome de Rett/complicaciones , Adulto Joven
10.
FASEB J ; 34(5): 6521-6538, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32246805

RESUMEN

Autism spectrum disorder (ASD) has been hypothesized to be a result of the interplay between genetic predisposition and increased vulnerability to early environmental insults. Mitochondrial dysfunctions appear also involved in ASD pathophysiology, but the mechanisms by which such alterations develop are not completely understood. Here, we analyzed ASD primary fibroblasts by measuring mitochondrial bioenergetics, ultrastructural and dynamic parameters to investigate the hypothesis that defects in these pathways could be interconnected phenomena responsible or consequence for the redox imbalance observed in ASD. High levels of 4-hydroxynonenal protein adducts together with increased NADPH (nicotinamide adenine dinucleotide phosphateoxidase) activity and mitochondrial superoxide production coupled with a compromised antioxidant response guided by a defective Nuclear Factor Erythroid 2-Related Factor 2 pathway confirmed an unbalanced redox homeostasis in ASD. Moreover, ASD fibroblasts showed overactive mitochondrial bioenergetics associated with atypical morphology and altered expression of mitochondrial electron transport chain complexes and dynamics-regulating factors. We suggest that many of the changes observed in mitochondria could represent compensatory mechanisms by which ASD cells try to adapt to altered energy demand, possibly resulting from a chronic oxinflammatory status.


Asunto(s)
Trastorno del Espectro Autista/patología , Metabolismo Energético , Fibroblastos/patología , Mitocondrias/patología , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo , Adolescente , Adulto , Trastorno del Espectro Autista/metabolismo , Estudios de Casos y Controles , Niño , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Mitocondrias/metabolismo , Adulto Joven
11.
Free Radic Biol Med ; 152: 100-106, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32119978

RESUMEN

Mutations in X-linked gene methyl-CpG-binding protein 2 (MECP2), a key transcriptional regulator, account for most cases of Rett syndrome (RTT), a devastating neurodevelopmental disorder with no known cure. Despite extensive research to elucidate MeCP2 functions, the mechanisms underlying RTT pathophysiology are still unclear. In addition to a variety of neurological symptoms, RTT also includes a plethora of additional phenotypical features including altered lipid metabolism, redox imbalance, immune dysfunction and mitochondrial abnormalities that explain its multisystemic nature. Here, we provide an overview of the current knowledge on the potential role of dysregulated inflammatory and immune responses in RTT. The findings show that abnormalities of humoral and cell-mediated immunity together with chronic low-grade inflammation in multiple organs represent not only clinical manifestations of RTT but rather can contribute to its development and deteriorating course. A future research challenge could be to target therapeutically immune dysfunction as a novel means for RTT management.


Asunto(s)
Síndrome de Rett , Humanos , Inmunidad , Metabolismo de los Lípidos , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Mutación , Síndrome de Rett/genética
12.
Redox Biol ; 28: 101334, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31606551

RESUMEN

Rett syndrome (RTT) is a progressive neurodevelopmental disorder mainly caused by mutations in the X-linked MECP2 gene. RTT patients show multisystem disturbances associated with an oxinflammatory status. Inflammasomes are multi-protein complexes, responsible for host immune responses against pathogen infections and redox-related cellular stress. Assembly of NLRP3/ASC inflammasome triggers pro-caspase-1 activation, thus, resulting in IL-1ß and IL-18 maturation. However, an aberrant activation of inflammasome system has been implicated in several human diseases. Our aim was to investigate the possible role of inflammasome in the chronic subclinical inflammatory condition typical of RTT, by analyzing this complex in basal and lipopolysaccharide (LPS)+ATP-stimulated primary fibroblasts, as well as in serum from RTT patients and healthy volunteers. RTT cells showed increased levels of nuclear p65 and ASC proteins, pro-IL-1ß mRNA, and NLRP3/ASC interaction in basal condition, without any further response upon the LPS + ATP stimuli. Moreover, augmented levels of circulating ASC and IL-18 proteins were found in serum of RTT patients, which are likely able to amplify the inflammatory response. Taken together, our findings suggest that RTT patients exhibited a challenged inflammasome machinery at cellular and systemic level, which may contribute to the subclinical inflammatory state feedback observed in this pathology.


Asunto(s)
Susceptibilidad a Enfermedades , Inflamasomas/metabolismo , Síndrome de Rett/etiología , Síndrome de Rett/metabolismo , Biomarcadores , Citocinas/metabolismo , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transporte de Proteínas
13.
Antioxidants (Basel) ; 8(9)2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31480513

RESUMEN

Uncontrolled accumulation of methylglyoxal (MG) and reactive oxygen species (ROS) occurs in hyperglycemia-induced endothelial dysfunction associated with diabetes. Resveratrol (RSV) protects the endothelium upon high glucose (HG); however, the mechanisms underlying such protective effects are still debated. Here we identified key molecular players involved in the glycative/oxidative perturbations occurring in endothelial cells exposed to HG. In addition, we determined whether RSV essentially required SIRT1 to trigger adaptive responses in HG-challenged endothelial cells. We used primary human umbilical vein endothelial cells (HUVECs) undergoing a 24-h treatment with HG, with or without RSV and EX527 (i.e., SIRT1 inhibitor). We found that HG-induced glycative stress (GS) and oxidative stress (OS), by reducing SIRT1 activity, as well as by diminishing the efficiency of MG- and ROS-targeting protection. RSV totally abolished the HG-dependent cytotoxicity, and this was associated with SIRT1 upregulation, together with increased expression of GLO1, improved ROS-scavenging efficiency, and total suppression of HG-related GS and OS. Interestingly, RSV failed to induce effective response to HG cytotoxicity when EX527 was present, thus suggesting that the upregulation of SIRT1 is essential for RSV to activate the major antiglycative and antioxidative defense and avoid MG- and ROS-dependent molecular damages in HG environment.

14.
Free Radic Biol Med ; 134: 598-603, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30743046

RESUMEN

Mutations in the MECP2 gene are the main cause of Rett syndrome (RTT), a pervasive neurodevelopmental disorder, that shows also multisystem disturbances associated with a metabolic component. The aim of this study was to investigate whether an increased production of oxidized linoleic acid metabolites, specifically 9- and 13-hydroxyoctadecadienoic acids (HODEs), can contribute to the altered the redox and immune homeostasis, suggested to be involved in RTT. Serum levels of 9- and 13-HODEs were elevated in RTT and associated with the expression of arachidonate 15-Lipoxygenase (ALOX15) in peripheral blood mononuclear cells (PBMCs). Omega-3 polyunsaturated fatty acids supplementation has shown to lower HODEs levels in RTT. Statistically significant correlation was demonstrated between the increased plasma HODEs levels and the lipoprotein-associated phospholipase A2 (Lp-PLA2) activity. Collectively, these findings reinforce the concept of the key role played by lipid peroxidation in RTT, and the possible ability of omega-3 polyunsaturated fatty acids supplementation in improving the oxinflammation status in RTT.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Inflamación/patología , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linoleicos/metabolismo , Síndrome de Rett/patología , Adolescente , Adulto , Araquidonato 15-Lipooxigenasa/genética , Estudios de Casos y Controles , Niño , Femenino , Humanos , Inflamación/genética , Inflamación/metabolismo , Leucocitos Mononucleares/metabolismo , Masculino , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Adulto Joven
15.
Cells ; 8(2)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30781346

RESUMEN

Rett syndrome (RTT) is a human neurodevelopmental disorder, whose pathogenesis has been linked to both oxidative stress and subclinical inflammatory status (OxInflammation). Methylglyoxal (MG), a glycolytic by-product with cytotoxic and pro-oxidant power, is the major precursor in vivo of advanced glycation end products (AGEs), which are known to exert their detrimental effect via receptor- (e.g., RAGE) or non-receptor-mediated mechanisms in several neurological diseases. On this basis, we aimed to compare fibroblasts from healthy subjects (CTR) with fibroblasts from RTT patients (N = 6 per group), by evaluating gene/protein expression patterns, and enzymatic activities of glyoxalases (GLOs), along with the levels of MG-dependent damage in both basal and MG-challenged conditions. Our results revealed that RTT is linked to an alteration of the GLOs system (specifically, increased GLO2 activity), that ensures unchanged MG-dependent damage levels. However, RTT cells underwent more pronounced cell death upon exogenous MG-treatment, as compared to CTR, and displayed lower RAGE levels than CTR, with no alterations following MG-treatment, thus suggesting that an adaptive response to dicarbonyl stress may occur. In conclusion, besides OxInflammation, RTT is associated with reshaping of the major defense systems against dicarbonyl stress, along with an altered cellular stress response towards pro-glycating insults.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Síndrome de Rett/metabolismo , Adolescente , Adulto , Supervivencia Celular/efectos de los fármacos , Niño , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Glicosilación , Humanos , Lactoilglutatión Liasa/metabolismo , Piruvaldehído/farmacología , Síndrome de Rett/patología , Tioléster Hidrolasas/metabolismo , Adulto Joven
16.
Oxid Med Cell Longev ; 2018: 5076271, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30533171

RESUMEN

Modern technologies relying on wireless communication systems have brought increasing levels of electromagnetic field (EMF) exposure. This increased research interest in the effects of these radiations on human health. There is compelling evidence that EMFs affect cell physiology by altering redox-related processes. Considering the importance of redox milieu in the biological competence of oocyte and sperm, we reviewed the existing literature regarding the effects of EMFs on reproductive systems. Given the role of mitochondria as the main source of reactive oxygen species (ROS), we focused on the hypothesis of a mitochondrial basis of EMF-induced reproductive toxicity. MEDLINE, Web of Science, and Scopus database were examined for peer-reviewed original articles by searching for the following keywords: "extremely low frequency electromagnetic fields (ELF-EMFs)," "radiofrequency (RF)," "microwaves," "Wi-Fi," "mobile phone," "oxidative stress," "mitochondria," "fertility," "sperm," "testis," "oocyte," "ovarian follicle," and "embryo." These keywords were combined with other search phrases relevant to the topic. Although we reported contradictory data due to lack of uniformity in the experimental designs, a growing body of evidence suggests that EMF exposure during spermatogenesis induces increased ROS production associated with decreased ROS scavenging activity. Numerous studies revealed the detrimental effects of EMFs from mobile phones, laptops, and other electric devices on sperm quality and provide evidence for extensive electron leakage from the mitochondrial electron transport chain as the main cause of EMF damage. In female reproductive systems, the contribution of oxidative stress to EMF-induced damages and the evidence of mitochondrial origin of ROS overproduction are reported, as well. In conclusion, mitochondria seem to play an important role as source of ROS in both male and female reproductive systems under EMF exposure. Future and more standardized studies are required for a better understanding of molecular mechanisms underlying EMF potential challenge to our reproductive system in order to improve preventive strategies.


Asunto(s)
Campos Electromagnéticos/efectos adversos , Genitales/efectos de la radiación , Mitocondrias/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Animales , Femenino , Humanos , Masculino
17.
Front Public Health ; 6: 33, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29527520

RESUMEN

Electrical devices currently used in clinical practice and common household equipments generate extremely low-frequency magnetic fields (ELF-MF) that were classified by the International Agency for Research on Cancer as "possible carcinogenic." Assuming that ELF-MF plays a role in the carcinogenic process without inducing direct genomic alterations, ELF-MF may be involved in the promotion or progression of cancers. In particular, ELF-MF-induced responses are suspected to activate redox-responsive intracellular signaling or detoxification scavenging systems. In fact, improved protection against oxidative stress and redox-active xenobiotics is thought to provide critical proliferative and survival advantage in tumors. On this basis, an ever-growing research activity worldwide is attempting to establish whether tumor cells may develop multidrug resistance through the activation of essential cytoprotective networks in the presence of ELF fields, and how this might trigger relevant changes in tumor phenotype. This review builds a framework around how the activity of redox-responsive mediators may be controlled by co-exposure to ELF-MF and reactive oxygen species-generating agents in tumor and cancer cells, in order to clarify whether and how such potential molecular targets could help to minimize or neutralize the functional interaction between ELF-MF and malignancies.

18.
J Cell Physiol ; 231(9): 2014-25, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26757151

RESUMEN

Extremely low frequency magnetic fields (ELF-MF) are common environmental agents that are suspected to promote later stages of tumorigenesis, especially in brain-derived malignancies. Even though ELF magnetic fields have been previously linked to increased proliferation in neuroblastoma cells, no previous work has studied whether ELF-MF exposure may change key biomolecular features, such as anti-glycative defence and energy re-programming, both of which are currently considered as crucial factors involved in the phenotype and progression of many malignancies. Our study investigated whether the hyperproliferation that is induced in SH-SY5Y human neuroblastoma cells by a 50 Hz, 1 mT ELF magnetic field is supported by an improved defense towards methylglyoxal (MG), which is an endogenous cancer-static and glycating α-oxoaldehyde, and by rewiring of energy metabolism. Our findings show that not only the ELF magnetic field interfered with the biology of neuron-derived malignant cells, by de-differentiating further the cellular phenotype and by increasing the proliferative activity, but also triggered cytoprotective mechanisms through the enhancement of the defense against MG, along with a more efficient management of metabolic energy, presumably to support the rapid cell outgrowth. Intriguingly, we also revealed that the MF-induced bioeffects took place after an initial imbalance of the cellular homeostasis, which most likely created a transient unstable milieu. The biochemical pathways and molecular targets revealed in this research could be exploited for future approaches aimed at limiting or suppressing the deleterious effects of ELF magnetic fields. J. Cell. Physiol. 231: 2014-2025, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proliferación Celular , Metabolismo Energético/efectos de los fármacos , Campos Magnéticos , Mitocondrias/efectos de los fármacos , Neuroblastoma/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Humanos , Mitocondrias/patología , Neuroblastoma/tratamiento farmacológico , Neuronas/efectos de los fármacos , Neuronas/patología , Piruvaldehído/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA