Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genetics ; 222(2)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36040194

RESUMEN

U12-type or minor introns are found in most multicellular eukaryotes and constitute ∼0.5% of all introns in species with a minor spliceosome. Although the biological significance for the evolutionary conservation of U12-type introns is debated, mutations disrupting U12 splicing cause developmental defects in both plants and animals. In human hematopoietic stem cells, U12 splicing defects disrupt proper differentiation of myeloid lineages and are associated with myelodysplastic syndrome, predisposing individuals to acute myeloid leukemia. Mutants in the maize ortholog of RNA binding motif protein 48 (RBM48) have aberrant U12-type intron splicing. Human RBM48 was recently purified biochemically as part of the minor spliceosome and shown to recognize the 5' end of the U6atac snRNA. In this report, we use CRISPR/Cas9-mediated ablation of RBM48 in human K-562 cells to show the genetic function of RBM48. RNA-seq analysis comparing wild-type and mutant K-562 genotypes found that 48% of minor intron-containing genes have significant U12-type intron retention in RBM48 mutants. Comparing these results to maize rbm48 mutants defined a subset of minor intron-containing genes disrupted in both species. Mutations in the majority of these orthologous minor intron-containing genes have been reported to cause developmental defects in both plants and animals. Our results provide genetic evidence that the primary defect of human RBM48 mutants is aberrant U12-type intron splicing, while a comparison of human and maize RNA-seq data identifies candidate genes likely to mediate mutant phenotypes of U12-type splicing defects.


Asunto(s)
Empalme del ARN , Proteínas de Unión al ARN , Empalmosomas , Humanos , Intrones , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Motivos de Unión al ARN , Proteínas de Unión al ARN/genética , Empalmosomas/genética , Empalmosomas/metabolismo , Zea mays/genética , Zea mays/metabolismo
2.
Plant Cell ; 31(3): 715-733, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30760564

RESUMEN

The last eukaryotic common ancestor had two classes of introns that are still found in most eukaryotic lineages. Common U2-type and rare U12-type introns are spliced by the major and minor spliceosomes, respectively. Relatively few splicing factors have been shown to be specific to the minor spliceosome. We found that the maize (Zea mays) RNA binding motif protein 48 (RBM48) is a U12 splicing factor that functions to promote cell differentiation and repress cell proliferation. RBM48 is coselected with the U12 splicing factor, zinc finger CCCH-type, RNA binding motif, and Ser/Arg rich 2/Rough endosperm 3 (RGH3). Protein-protein interactions between RBM48, RGH3, and U2 Auxiliary Factor (U2AF) subunits suggest major and minor spliceosome factors required for intron recognition form complexes with RBM48. Human RBM48 interacts with armadillo repeat containing 7 (ARMC7). Maize RBM48 and ARMC7 have a conserved protein-protein interaction. These data predict that RBM48 is likely to function in U12 splicing throughout eukaryotes and that U12 splicing promotes endosperm cell differentiation in maize.


Asunto(s)
Proteínas de Plantas/metabolismo , Empalme del ARN , ARN Nuclear Pequeño/metabolismo , Empalmosomas , Zea mays/genética , Diferenciación Celular , Endospermo/genética , Endospermo/fisiología , Intrones/genética , Fenotipo , Proteínas de Plantas/genética , ARN Nuclear Pequeño/genética , Motivos de Unión al ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Zea mays/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...