Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Oecologia ; 201(2): 341-354, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36746795

RESUMEN

Compared to other animal movements, prospecting by adult individuals for a future breeding site is commonly overlooked. Prospecting influences the decision of where to breed and has consequences on fitness and lifetime reproductive success. By analysing movements of 31 satellite- and GPS-tracked gull and tern populations belonging to 14 species in Europe and North America, we examined the occurrence and factors explaining prospecting by actively breeding birds. Prospecting in active breeders occurred in 85.7% of studied species, across 61.3% of sampled populations. Prospecting was more common in populations with frequent inter-annual changes of breeding sites and among females. These results contradict theoretical models which predict that prospecting is expected to evolve in relatively predictable and stable environments. More long-term tracking studies are needed to identify factors affecting patterns of prospecting in different environments and understand the consequences of prospecting on fitness at the individual and population level.


Asunto(s)
Aves , Charadriiformes , Animales , Femenino , Europa (Continente) , Reproducción , América del Norte
2.
Ecol Evol ; 8(15): 7529-7542, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30151168

RESUMEN

Herring gulls (Larus argentatus) are opportunistic predators that prefer to forage in the intertidal zone, but an increasing degree of terrestrial foraging has recently been observed. We therefore aimed to analyze the factors influencing foraging behavior and diet composition in the German Wadden Sea. Gulls from three breeding colonies on islands at different distances from the mainland were equipped with GPS data loggers during the incubation seasons in 2012-2015. Logger data were analyzed for 37 individuals, including 1,115 foraging trips. Herring gulls breeding on the island furthest from the mainland had shorter trips (mean total distance = 12.3 km; mean maximum distance = 4.2 km) and preferred to feed on the tidal flats close to the colony, mainly feeding on common cockles (Cerastoderma edule) and shore crabs (Carcinus maenas). In contrast, herring gulls breeding close to the mainland carried out trips with a mean total distance of 26.7 km (mean maximum distance = 9.2 km). These gulls fed on the neobiotic razor clams (Ensis leei) in the intertidal zone, and a larger proportion of time was spent in distant terrestrial habitats on the mainland, feeding on earthworms. δ13C and δ15N values were higher at the colony furthest from the mainland and confirmed a geographical gradient in foraging strategy. Analyses of logger data, pellets, and stable isotopes revealed that herring gulls preferred to forage in intertidal habitats close to the breeding colony, but shifted to terrestrial habitats on the mainland as the tide rose and during the daytime. Reduced prey availability in the vicinity of the breeding colony might force herring gulls to switch to feed on razor clams in the intertidal zone or to use distant terrestrial habitats. Herring gulls may thus act as an indicator for the state of the intertidal system close to their breeding colony.

3.
Environ Monit Assess ; 190(8): 461, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29998431

RESUMEN

Marine ecosystems are exposed to increasing human pressures and climatic change worldwide. It has therefore become essential to describe ecosystem statuses with respect to multinational protection schemes, often necessitating long-term monitoring programmes. Changes in the food-web structure, which can be monitored via stable isotope measurements, represent an important descriptor of the status of marine ecosystems. We investigated long-term changes (29 years) in isotopic values (δ13C and δ15N) in four indicative organisms at different trophic levels in the southern North and Baltic Seas: bladderwrack (Fucus vesiculosus), blue mussel (Mytilus ssp.), eelpout (Zoarces viviparus), and herring gull (Larus argentatus). Time series analyses using generalised additive models revealed largely consistent declines in δ13C and δ15N throughout all trophic levels of the coastal food web at all study sites, indicating a clear change in these coastal regions from 1988 to 2016. There were no clear long-term patterns in egg biometrics for herring gulls, except for a consistent increase in eggshell thickness. The declines in stable isotope values were in line with the results of previous long-term studies of single higher-trophic-level species, which suggested that the noted changes were mainly caused by altered foraging patterns of the studied species. The current results demonstrate that declines in δ13C and δ15N have occurred throughout the whole food web, not just in particular species. We discuss the possible reasons for the decrease in stable isotope values, including decreasing eutrophication and an increase in terrestrial carbon sources.


Asunto(s)
Organismos Acuáticos/química , Ecosistema , Monitoreo del Ambiente , Cadena Alimentaria , Animales , Países Bálticos , Isótopos de Carbono/análisis , Charadriiformes/metabolismo , Fucus/química , Isótopos de Nitrógeno/análisis , Perciformes/metabolismo
4.
PLoS One ; 11(8): e0159630, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27525661

RESUMEN

Lesser black-backed gulls Larus fuscus are considered to be mainly pelagic. We assessed the importance of different landscape elements (open sea, tidal flats and inland) by comparing marine and terrestrial foraging behaviours in lesser black-backed gulls breeding along the coast of the southern North Sea. We attached GPS data loggers to eight incubating birds and collected information on diet and habitat use. The loggers recorded data for 10-19 days to allow flight-path reconstruction. Lesser black-backed gulls foraged in both offshore and inland areas, but rarely on tidal flats. Targets and directions were similar among all eight individuals. Foraging trips (n = 108) lasted 0.5-26.4 h (mean 8.7 h), and ranges varied from 3.0-79.9 km (mean 30.9 km). The total distance travelled per foraging trip ranged from 7.5-333.6 km (mean 97.9 km). Trips out to sea were significantly more variable in all parameters than inland trips. Presence in inland areas was closely associated with daylight, whereas trips to sea occurred at day and night, but mostly at night. The most common items in pellets were grass (48%), insects (38%), fish (28%), litter (26%) and earthworms (20%). There was a significant relationship between the carbon and nitrogen isotope signals in blood and the proportional time each individual spent foraging at sea/land. On land, gulls preferentially foraged on bare ground, with significantly higher use of potato fields and significantly less use of grassland. The flight patterns of lesser black-backed gulls at sea overlapped with fishing-vessel distribution, including small beam trawlers fishing for shrimps in coastal waters close to the colony and large beam-trawlers fishing for flatfish at greater distances. Our data show that individuals made intensive use of the anthropogenic landscape and seascape, indicating that lesser black-backed gulls are not a predominantly marine species during the incubation period.


Asunto(s)
Organismos Acuáticos , Conducta Animal , Aves , Cruzamiento , Animales , Océano Atlántico , Ecosistema , Europa (Continente) , Explotaciones Pesqueras
5.
Ecol Evol ; 6(4): 974-86, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26941940

RESUMEN

Reducing resource competition is a crucial requirement for colonial seabirds to ensure adequate self- and chick-provisioning during breeding season. Spatial segregation is a common avoidance strategy among and within species from neighboring breeding colonies. We determined whether the foraging behaviors of incubating lesser black-backed gulls (Larus fuscus) differed between six colonies varying in size and distance to mainland, and whether any differences could be related to the foraging habitats visited. Seventy-nine incubating individuals from six study colonies along the German North Sea coast were equipped with GPS data loggers in multiple years. Dietary information was gained by sampling food pellets, and blood samples were taken for stable isotope analyses. Foraging patterns clearly differed among and within colonies. Foraging range increased with increasing colony size and decreased with increasing colony distance from the mainland, although the latter might be due to the inclusion of the only offshore colony. Gulls from larger colonies with consequently greater density-dependent competition were more likely to forage at land instead of at sea. The diets of the gulls from the colonies furthest from each other differed, while the diets from the other colonies overlapped with each other. The spatial segregation and dietary similarities suggest that lesser black-backed gulls foraged at different sites and utilized two main habitat types, although these were similar across foraging areas for all colonies except the single offshore island. The avoidance of intraspecific competition results in colony-specific foraging patterns, potentially causing more intensive utilization of terrestrial foraging sites, which may offer more predictable and easily available foraging compared with the marine environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...