RESUMEN
In the past decade, human genetics research saw an acceleration of disease gene discovery and further dissection of the genetic architectures of many disorders. Much of this progress was enabled via data aggregation projects, collaborative data sharing among researchers, and the adoption of sophisticated and standardized bioinformatics analyses pipelines. In 2012, we launched the GENESIS platform, formerly known as GEM.app, with the aims to 1) empower clinical and basic researchers without bioinformatics expertise to analyze and explore genome level data and 2) facilitate the detection of novel pathogenic variation and novel disease genes by leveraging data aggregation and genetic matchmaking. The GENESIS database has grown to over 20,000 datasets from rare disease patients, which were provided by multiple academic research consortia and many individual investigators. Some of the largest global collections of genome-level data are available for Charcot-Marie-Tooth disease, hereditary spastic paraplegia, and cerebellar ataxia. A number of rare disease consortia and networks are archiving their data in this database. Over the past decade, more than 1500 scientists have registered and used this resource and published over 200 papers on gene and variant identifications, which garnered >6000 citations. GENESIS has supported >100 gene discoveries and contributed to approximately half of all gene identifications in the fields of inherited peripheral neuropathies and spastic paraplegia in this time frame. Many diagnostic odysseys of rare disease patients have been resolved. The concept of genomes-to-therapy has borne out for a number of such discoveries that let to rapid clinical trials and expedited natural history studies. This marks GENESIS as one of the most impactful data aggregation initiatives in rare monogenic diseases.
Asunto(s)
Bases de Datos Genéticas , Genómica , Humanos , Genómica/métodos , Bases de Datos Genéticas/tendencias , Biología Computacional/métodosRESUMEN
Epigenetic clocks that quantify rates of aging from DNA methylation patterns across the genome have emerged as a potential biomarker for risk of age-related diseases, like Alzheimer's disease (AD), and environmental and social stressors. However, methylation clocks have not been validated in genetically diverse cohorts. Here we evaluate a set of methylation clocks in 621 AD patients and matched controls from African American, Hispanic, and white co-horts. The clocks are less accurate at predicting age in genetically admixed individuals, especially those with substantial African ancestry, than in the white cohort. The clocks also do not consistently identify age acceleration in admixed AD cases compared to controls. Methylation QTL (meQTL) commonly influence CpGs in clocks, and these meQTL have significantly higher frequencies in African genetic ancestries. Our results demonstrate that methylation clocks often fail to predict age and AD risk beyond their training populations and suggest avenues for improving their portability.
RESUMEN
Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative spinocerebellar ataxia caused by a polyglutamine-coding CAG repeat expansion in the ATXN3 gene. While the CAG length correlates negatively with the age at onset, it accounts for approximately 50% of its variability only. Despite larger efforts in identifying contributing genetic factors, candidate genes with a robust and plausible impact on the molecular pathogenesis of MJD are scarce. Therefore, we analysed missense single nucleotide polymorphism variants in the PRKN gene encoding the Parkinson's disease-associated E3 ubiquitin ligase parkin, which is a well-described interaction partner of the MJD protein ataxin-3, a deubiquitinase. By performing a correlation analysis in the to-date largest MJD cohort of more than 900 individuals, we identified the V380L variant as a relevant factor, decreasing the age at onset by 3 years in homozygous carriers. Functional analysis in an MJD cell model demonstrated that parkin V380L did not modulate soluble or aggregate levels of ataxin-3 but reduced the interaction of the two proteins. Moreover, the presence of parkin V380L interfered with the execution of mitophagy-the autophagic removal of surplus or damaged mitochondria-thereby compromising cell viability. In summary, we identified the V380L variant in parkin as a genetic modifier of MJD, with negative repercussions on its molecular pathogenesis and disease age at onset.
Asunto(s)
Enfermedad de Machado-Joseph , Mitofagia , Ubiquitina-Proteína Ligasas , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Humanos , Ubiquitina-Proteína Ligasas/genética , Mitofagia/genética , Mitofagia/fisiología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Polimorfismo de Nucleótido Simple , Ataxina-3/genética , Edad de Inicio , Proteínas RepresorasRESUMEN
BACKGROUND: Latin America has played a crucial role in advancing our understanding of Huntington's disease (HD). However, previous global reviews include limited data from Latin America. It is possible that English-based medical search engines may not capture all the relevant studies. METHODS: We searched databases in Spanish, Portuguese, and English. The names of every country in Latin America in English-based search engines were used to ensure we found any study that had molecular ascertainment and provided general epidemiological information or subpopulation data. Additionally, we contacted experts across the region. RESULTS: The search strategy yielded 791 citations; 24 studies met inclusion criteria, representing 12 of 36 countries. The overall pooled prevalence was 0.64 per 100,000 (prediction interval, 0.06-7.22); for cluster regions, it was 54 per 100,000 (95% CI, 34.79-84.92); for juvenile HD, it was 8.7% (prediction interval, 5.12-14.35), and 5.9% (prediction interval, 2.72-13.42) for late-onset HD. The prevalence was higher for Mexico, Peru, and Brazil. However, there were no significant differences between Central America and the Caribbean versus South America. CONCLUSION: The prevalence of HD appears to be similar across Latin America. However, we infer that our findings are underestimates, in part because of limited research and underdiagnosis of HD because of limited access to molecular testing and the availability of neurologists and movement disorders specialists. Future research should focus on identifying pathways to improve access to molecular testing and education and understanding differences among different ancestral groups in Latin America. © 2024 International Parkinson and Movement Disorder Society.
RESUMEN
BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disease following Alzheimer's disease. Nearly 30 causative genes have been identified for PD and related disorders. However, most of these genes were identified in European-derived families, and little is known about their role in Latin American populations. OBJECTIVES: Our goal was to assess the spectrum and frequency of pathogenic variants in known PD genes in familial PD patients from Latin America. METHODS: We selected 335 PD patients with a family history of PD from the Latin American Research Consortium on the Genetics of PD. We capture-sequenced the coding regions of 26 genes related to neurodegenerative parkinsonism. Of the 335 PD patients, 324 had sufficient sequencing coverage to be analyzed. RESULTS: We identified pathogenic variants in 41 individuals (12.7%) in FBXO7, GCH1, LRRK2, PARK7, PINK1, PLA2G6, PRKN, SNCA, and TARDBP, GBA1 risk variants in 25 individuals (7.7%), and variants of uncertain significance in another 24 individuals (7.4%) in ATP13A2, ATP1A3, DNAJC13, DNAJC6, GBA1, LRKK2, PINK1, VPS13C, and VPS35. Of the 70 unique variants identified, 19 were more frequent in Latin Americans than in any other population. CONCLUSIONS: This is the first screening of known PD genes in a large cohort of patients with familial PD from Latin America. There were substantial differences in the spectrum of variants observed in comparison to previous findings from PD families of European origin. Our data provide further evidence that differences exist between the genetic architecture of PD in Latinos and European-derived populations. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Pruebas Genéticas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Pruebas Genéticas/métodos , América del Sur , América Central , Predisposición Genética a la Enfermedad/genética , AdultoRESUMEN
There is mounting evidence of the value of clinical genome sequencing (cGS) in individuals with suspected rare genetic disease (RGD), but cGS performance and impact on clinical care in a diverse population drawn from both high-income countries (HICs) and low- and middle-income countries (LMICs) has not been investigated. The iHope program, a philanthropic cGS initiative, established a network of 24 clinical sites in eight countries through which it provided cGS to individuals with signs or symptoms of an RGD and constrained access to molecular testing. A total of 1,004 individuals (median age, 6.5 years; 53.5% male) with diverse ancestral backgrounds (51.8% non-majority European) were assessed from June 2016 to September 2021. The diagnostic yield of cGS was 41.4% (416/1,004), with individuals from LMIC sites 1.7 times more likely to receive a positive test result compared to HIC sites (LMIC 56.5% [195/345] vs. HIC 33.5% [221/659], OR 2.6, 95% CI 1.9-3.4, p < 0.0001). A change in diagnostic evaluation occurred in 76.9% (514/668) of individuals. Change of management, inclusive of specialty referrals, imaging and testing, therapeutic interventions, and palliative care, was reported in 41.4% (285/694) of individuals, which increased to 69.2% (480/694) when genetic counseling and avoidance of additional testing were also included. Individuals from LMIC sites were as likely as their HIC counterparts to experience a change in diagnostic evaluation (OR 6.1, 95% CI 1.1-∞, p = 0.05) and change of management (OR 0.9, 95% CI 0.5-1.3, p = 0.49). Increased access to genomic testing may support diagnostic equity and the reduction of global health care disparities.
Asunto(s)
Pruebas Genéticas , Enfermedades Raras , Secuenciación Completa del Genoma , Humanos , Masculino , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Femenino , Niño , Pruebas Genéticas/métodos , Preescolar , Adolescente , Adulto , Lactante , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/diagnósticoRESUMEN
INTRODUCTION: While Latin America (LatAm) is facing an increasing burden of dementia due to the rapid aging of the population, it remains underrepresented in dementia research, diagnostics, and care. METHODS: In 2023, the Alzheimer's Association hosted its eighth satellite symposium in Mexico, highlighting emerging dementia research, priorities, and challenges within LatAm. RESULTS: Significant initiatives in the region, including intracountry support, showcased their efforts in fostering national and international collaborations; genetic studies unveiled the unique genetic admixture in LatAm; researchers conducting emerging clinical trials discussed ongoing culturally specific interventions; and the urgent need to harmonize practices and studies, improve diagnosis and care, and use affordable biomarkers in the region was highlighted. DISCUSSION: The myriad of topics discussed at the 2023 AAIC satellite symposium highlighted the growing research efforts in LatAm, providing valuable insights into dementia biology, genetics, epidemiology, treatment, and care.
Asunto(s)
Demencia , Humanos , Demencia/terapia , Demencia/diagnóstico , Demencia/genética , Demencia/epidemiología , América Latina/epidemiología , México/epidemiología , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Investigación Biomédica , Congresos como AsuntoRESUMEN
Introduction: Plasma phosphorylated threonine-181 of Tau and amyloid beta are biomarkers for differential diagnosis and preclinical detection of Alzheimer disease (AD). Given differences in AD risk across diverse populations, generalizability of existing biomarker data is not assured. Methods: In 2,086 individuals of diverse genetic ancestries (African American, Caribbean Hispanic, and Peruvians) we measured plasma pTau-181 and Aß42/Aß40. Differences in biomarkers between cohorts and clinical diagnosis groups and the potential discriminative performance of the two biomarkers were assessed. Results: pTau-181 and Aß42/Aß40 were consistent across cohorts. Higher levels of pTau181 were associated with AD while Aß42/Aß40 had minimal differences. Correspondingly, pTau-181 had greater predictive value than Aß42/Aß40, however, the area under the curve differed between cohorts. Discussion: pTau-181 as a plasma biomarker for clinical AD is generalizable across genetic ancestries, but predictive value may differ. Combining genomic and biomarker data from diverse individuals will increase understanding of genetic risk and refine clinical diagnoses.
RESUMEN
INTRODUCTION: Spinocerebellar ataxia type 2 (SCA2) is a dominant neurodegenerative disorder due to expansions of a CAG repeat tract (CAGexp) at the ATXN2 gene. Previous studies found only one ancestral haplotype worldwide, with a C allele at rs695871. This homogeneity was unexpected, given the severe anticipations related to SCA2. We aimed to describe informative ancestral haplotypes found in South American SCA2 families. METHODS: Seventy-seven SCA2 index cases were recruited from Brazil, Peru, and Uruguay; 263 normal chromosomes were used as controls. The SNPs rs9300319, rs3809274, rs695871, rs1236900 and rs593226, and the STRs D12S1329, D12S1333, D12S1672 and D12S1332, were used to reconstruct haplotypes. RESULTS: Eleven ancestral haplotypes were found in SCA2 families. The most frequent ones were A-G-C-C-C (46.7 % of families), G-C-C-C-C (24.6 %) and A-C-C-C-C (10.3 %) and their mean (sd) CAGexp were 41.68 (3.55), 40.42 (4.11) and 45.67 (9.70) (p = 0.055), respectively. In contrast, the mean (sd) CAG lengths at normal alleles grouped per haplotypes G-C-G-A-T, A-G-C-C-C and G-C-C-C-C were 22.97 (3.93), 23.85 (3.59), and 30.81 (4.27) (p < 0.001), respectively. The other SCA2 haplotypes were rare: among them, a G-C-G-A-T lineage was found, evidencing a G allele in rs695871. CONCLUSION: We identified several distinct ancestral haplotypes in SCA2 families, including an unexpected lineage with a G allele at rs695871, a variation never found in hundreds of SCA2 patients studied worldwide. SCA2 has multiple origins in South America, and more studies should be done in other regions of the world.
Asunto(s)
Proteínas del Tejido Nervioso , Ataxias Espinocerebelosas , Humanos , Ataxinas/genética , Proteínas del Tejido Nervioso/genética , Ataxias Espinocerebelosas/genética , Alelos , HaplotiposRESUMEN
BACKGROUND: Identifying hereditary parkinsonism is valuable for diagnosis, genetic counseling, patient prioritization in trials, and studying the disease for personalized therapies. However, most studies were conducted in Europeans, and limited data exist on admixed populations like those from Latin America. OBJECTIVES: This study aims to assess the frequency and distribution of genetic parkinsonism in Latin America. METHODS: We conducted a systematic review and meta-analysis of the frequency of parkinsonian syndromes associated with genetic pathogenic variants in Latin America. We defined hereditary parkinsonism as those caused by the genes outlined by the MDS Nomenclature of Genetic Movement Disorders and heterozygous carriers of GBA1 pathogenic variants. A systematic search was conducted in PubMed, Web of Science, Embase, and LILACS in August 2022. Researchers reviewed titles and abstracts, and disagreements were resolved by a third researcher. After this screening, five researchers reanalyzed the selection criteria and extracted information based on the full paper. The frequency for each parkinsonism-related gene was determined by the presence of pathogenic/likely pathogenic variants among screened patients. Cochran's Q and I2 tests were used to quantify heterogeneity. Meta-regression, publication bias tests, and sensitivity analysis regarding study quality were also used for LRRK2-, PRKN-, and GBA1-related papers. RESULTS: We included 73 studies involving 3014 screened studies from 16 countries. Among 7668 Latin American patients, pathogenic variants were found in 19 different genes. The frequency of the pathogenic variants in LRRK2 was 1.38% (95% confidence interval [CI]: 0.52-2.57), PRKN was 1.16% (95% CI: 0.08-3.05), and GBA1 was 4.17% (95% CI: 2.57-6.08). For all meta-analysis, heterogeneity was high and publication bias tests were negative, except for PRKN, which was contradictory. Information on the number of pathogenic variants in the other genes is further presented in the text. CONCLUSIONS: This study provides insights into hereditary and GBA1-related parkinsonism in Latin America. Lower GBA1 frequencies compared to European/North American cohorts may result from limited access to gene sequencing. Further research is vital for regional prevalence understanding, enabling personalized care and therapies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Trastornos Parkinsonianos , Humanos , América Latina/epidemiología , Trastornos Parkinsonianos/epidemiología , Trastornos Parkinsonianos/genéticaRESUMEN
Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder, currently affecting ~7 million people worldwide. PD is clinically and genetically heterogeneous, with at least 10% of all cases explained by a monogenic cause or strong genetic risk factor. However, the vast majority of our present data on monogenic PD is based on the investigation of patients of European White ancestry, leaving a large knowledge gap on monogenic PD in underrepresented populations. Gene-targeted therapies are being developed at a fast pace and have started entering clinical trials. In light of these developments, building a global network of centers working on monogenic PD, fostering collaborative research, and establishing a clinical trial-ready cohort is imperative. Based on a systematic review of the English literature on monogenic PD and a successful team science approach, we have built up a network of 59 sites worldwide and have collected information on the availability of data, biomaterials, and facilities. To enable access to this resource and to foster collaboration across centers, as well as between academia and industry, we have developed an interactive map and online tool allowing for a quick overview of available resources, along with an option to filter for specific items of interest. This initiative is currently being merged with the Global Parkinson's Genetics Program (GP2), which will attract additional centers with a focus on underrepresented sites. This growing resource and tool will facilitate collaborative research and impact the development and testing of new therapies for monogenic and potentially for idiopathic PD patients.
Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Cuidados PaliativosRESUMEN
BACKGROUND: Sex differences in Parkinson's disease (PD) risk are well-known. However, the role of sex chromosomes in the development and progression of PD is still unclear. OBJECTIVE: The objective of this study was to perform the first X-chromosome-wide association study for PD risk in a Latin American cohort. METHODS: We used data from three admixed cohorts: (1) Latin American Research consortium on the Genetics of Parkinson's Disease (n = 1504) as discover cohort, and (2) Latino cohort from International Parkinson Disease Genomics Consortium (n = 155) and (3) Bambui Aging cohort (n = 1442) as replication cohorts. We also developed an X-chromosome framework specifically designed for admixed populations. RESULTS: We identified eight linkage disequilibrium regions associated with PD. We replicated one of these regions (top variant rs525496; discovery odds ratio [95% confidence interval]: 0.60 [0.478-0.77], P = 3.13 × 10-5 replication odds ratio: 0.60 [0.37-0.98], P = 0.04). rs5525496 is associated with multiple expression quantitative trait loci in brain and non-brain tissues, including RAB9B, H2BFM, TSMB15B, and GLRA4, but colocalization analysis suggests that rs5525496 may not mediate risk by expression of these genes. We also replicated a previous X-chromosome-wide association study finding (rs28602900), showing that this variant is associated with PD in non-European populations. CONCLUSIONS: Our results reinforce the importance of including X-chromosome and diverse populations in genetic studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Cromosomas Humanos X , Enfermedad de Parkinson , Femenino , Humanos , Masculino , Estudio de Asociación del Genoma Completo , Hispánicos o Latinos , América Latina , Enfermedad de Parkinson/genética , Factores Sexuales , Cromosomas Humanos X/genética , Desequilibrio de Ligamiento/genéticaRESUMEN
RESUMEN La enfermedad de Huntington (EH) es una enfermedad neurodegenerativa hereditaria de progresión irremediablemente fatal. Existen otros trastornos con síntomas semejantes a los de esta enfermedad y que son llamados fenocopias. En nuestro reporte, se presentan los casos de dos hermanos con fenotipo compatible con EH, uno ellos con una fenocopia intrafamiliar, caracterizada por un síndrome coreico y cambios del comportamiento, con estudio genético negativo para EH. El caso índice cursa con una forma parkinsoniana de EH de inicio juvenil, con evolución lentamente progresiva que, además, presenta síntomas neuropsiquiátricos, con respuesta mínima a tratamiento sintomático con psicofármacos. El hermano mayor, caso de fenocopia intrafamiliar, cursó con movimientos discinéticos cervicofaciales y faciales severos, psicosis y cognición conservada. En conclusión, las fenocopias de EH pueden presentarse incluso dentro de una familia con EH genéticamente confirmada. Se recomienda una detallada evaluación neurológica y un estudio genético apropiado en todos los casos en que se tenga sospecha clínica de EH, incluso en familiares directos de pacientes diagnosticados con la enfermedad.
ABSTRACT Huntington's disease (HD) is an inherited neurodegenerative disorder with an always fatal outcome. Other disorders resemble the symptoms of this disease and are called phenocopies. The cases of two brothers in a family affected with a phenotype compatible with HD, are presented, one of them an intrafamilial phenocopy, characterized by choreic syndrome, abnormal behavior, and negative HD genetic testing. The index case evolves with a juvenile-onset slowly progressive parkinsonian form of HD that, in addition, presents neuropsychiatric symptoms with minimal response to symptomatic treatment with dopamine antagonists. The older brother, the intrafamilial phenocopy, experienced severe facial cervicofacial and cervical dyskinetic movements, psychosis, and preserved cognition. In conclusion, the HD phenocopies might occur even within a known, genetically confirmed HD family. It is recommended to perform a detailed neurological examination together with appropriate genetic testing in all cases with clinical suspicious of HD, including direct family members of HD affected individuals.
RESUMEN
RESUMEN La ataxia espinocerebelosa tipo 2 (SCA2) es una enfermedad neurodegenerativa hereditaria autosómica dominante, causada por una expansión anormal del trinucleótido CAG en el gen ATXN2. La SCA2 se presenta habitualmente en la edad adulta, con ataxia progresiva asociada a neuropatía periférica, alteración de movimientos oculares, parkinsonismo, entre otros síntomas. Exámenes auxiliares aplicables incluyen pruebas bioquímicas, neuroimágenes, como resonancia magnética cerebral, y estudio genético molecular. Describimos, por primera vez en la población peruana, el caso de una mujer de mediana edad con diagnóstico confirmado de SCA2, cuya resonancia magnética cerebral muestra el signo de la cruz (o hot cross bun sign).
ABSTRACT Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant inherited neurodegenerative disease, caused by an abnormal CAG trinucleotide expansion in the ATXN2 gene. SCA2 usually occurs in adulthood, with progressive ataxia associated with peripheral neuropathy, impaired eye movements, parkinsonism, and other symptoms. Auxiliary exams include biochemical tests, neuroimaging such as brain MRI, and a molecular genetic study. We describe, for the first time in the Peruvian population, the case of a middle-aged woman with a confirmed diagnosis of SCA2, whose brain MRI shows the "Hot Cross Bun Sign".
RESUMEN
Sex differences in Parkinson Disease (PD) risk are well-known. However, it is still unclear the role of sex chromosomes in the development and progression of PD. We performed the first X-chromosome Wide Association Study (XWAS) for PD risk in Latin American individuals. We used data from three admixed cohorts: (i) Latin American Research consortium on the GEnetics of Parkinson's Disease (n=1,504) as discover cohort and (ii) Latino cohort from International Parkinson Disease Genomics Consortium (n = 155) and (iii) Bambui Aging cohort (n= 1,442) as replication cohorts. After developing a X-chromosome framework specifically designed for admixed populations, we identified eight linkage disequilibrium regions associated with PD. We fully replicated one of these regions (top variant rs525496; discovery OR [95%CI]: 0.60 [0.478 - 0.77], p = 3.13 × 10 -5 ; replication OR: 0.60 [0.37-0.98], p = 0.04). rs525496 is an expression quantitative trait loci for several genes expressed in brain tissues, including RAB9B, H2BFM, TSMB15B and GLRA4 . We also replicated a previous XWAS finding (rs28602900), showing that this variant is associated with PD in non-European populations. Our results reinforce the importance of including X-chromosome and diverse populations in genetic studies.
RESUMEN
Background: Juvenile-onset Huntington's Disease (JoHD) or Huntington's disease (HD) with age of onset ≤20 years, is a rare clinical entity that often differs phenotypically from adult HD and represents only 1-15% of total HD cases. Objective: To characterize the genetic and clinical characteristics of 32 JoHD patients seen in a Peruvian Neurogenetics clinic from 2000-2018. Methods: This study is a retrospective clinical and genetic review. The clinical database in Lima, Peru was searched for HD patients seen in clinic between 2000 and 2018. Inclusion criteria were: (1) genetically confirmed disease; and (2) HD age of onset ≤20 years, according to the documented medical history. Results: Among 475 patients with genetically confirmed HD in the database, 32 patients (6.7%) had symptom onset at ≤20 years. Among JoHD patients with a known transmitting parent (30 of 32), paternal transmission accounted for 77% of cases. Anticipation was higher with paternal transmission compared to maternal transmission (27.5 ± 11.5 vs. 11.3 ± 7.1 years). Overall expanded CAG repeat length ranged from 44 to 110, with a mean length of 65.6 ± 15.4, and 14 (44%) cases had repeat length under 60. Of the 32 patients included in the study, 25 had detailed clinical symptomatology available, and many patients had unique clinical features such as prominent sleep disturbance (60% of patients), or parkinsonism (73%). Conclusions: This large case series of JoHD patients characterizes the Peruvian JoHD population, reports on unique familial relationships in JoHD, and highlights the varied symptomatic presentation of this rare disease.
RESUMEN
In 2004, the identification of pathogenic variants in the LRRK2 gene across several families with autosomal dominant late-onset Parkinson's disease (PD) revolutionized our understanding of the role of genetics in PD. Previous beliefs that genetics in PD was limited to rare early-onset or familial forms of the disease were quickly dispelled. Currently, we recognize LRRK2 p.G2019S as the most common genetic cause of both sporadic and familial PD, with more than 100,000 affected carriers across the globe. The frequency of LRRK2 p.G2019S is also highly variable across populations, with some regions of Asian or Latin America reporting close to 0%, contrasting to Ashkenazi Jews or North African Berbers reporting up to 13% and 40%, respectively. Patients with LRRK2 pathogenic variants are clinically and pathologically heterogeneous, highlighting the age-related variable penetrance that also characterizes LRRK2-related disease. Indeed, the majority of patients with LRRK2-related disease are characterized by a relatively mild Parkinsonism with less motor symptoms with variable presence of α-synuclein and/or tau aggregates, with pathologic pleomorphism widely described. At a functional cellular level, it is likely that pathogenic variants mediate a toxic gain-of-function of the LRRK2 protein resulting in increased kinase activity perhaps in a cell-specific manner; by contrast, some LRRK2 variants appear to be protective reducing PD risk by decreasing the kinase activity. Therefore, employing this information to define appropriate patient populations for clinical trials of targeted kinase LRRK2 inhibition strategies is very promising and demonstrates a potential future application for PD using precision medicine.