Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Macromolecules ; 54(3): 1159-1169, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33583957

RESUMEN

RAFT dispersion polymerization of 2,2,2-trifluoroethyl methacrylate (TFEMA) is performed in n-dodecane at 90 °C using a relatively short poly(stearyl methacrylate) (PSMA) precursor and 2-cyano-2-propyl dithiobenzoate (CPDB). The growing insoluble poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) block results in the formation of PSMA-PTFEMA diblock copolymer nano-objects via polymerization-induced self-assembly (PISA). GPC analysis indicated narrow molecular weight distributions (M w/M n ≤ 1.34) for all copolymers, with 19F NMR studies indicating high TFEMA conversions (≥95%) for all syntheses. A pseudo-phase diagram was constructed to enable reproducible targeting of pure spheres, worms, or vesicles by varying the target degree of polymerization of the PTFEMA block at 15-25% w/w solids. Nano-objects were characterized using dynamic light scattering, transmission electron microscopy, and small-angle X-ray scattering. Importantly, the near-identical refractive indices for PTFEMA (1.418) and n-dodecane (1.421) enable the first example of highly transparent vesicles to be prepared. The turbidity of such dispersions was examined between 20 and 90 °C. The highest transmittance (97% at 600 nm) was observed for PSMA9-PTFEMA294 vesicles (237 ± 24 nm diameter; prepared at 25% w/w solids) in n-dodecane at 20 °C. Interestingly, targeting the same diblock composition in n-hexadecane produced a vesicle dispersion with minimal turbidity at a synthesis temperature of 90 °C. This solvent enabled in situ visible absorption spectra to be recorded during the synthesis of PSMA16-PTFEMA86 spheres at 15% w/w solids, which allowed the relatively weak n→π* band at 515 nm assigned to the dithiobenzoate chain-ends to be monitored. Unfortunately, the premature loss of this RAFT chain-end occurred during the RAFT dispersion polymerization of TFEMA at 90 °C, so meaningful kinetic data could not be obtained. Furthermore, the dithiobenzoate chain-ends exhibited a λmax shift of 8 nm relative to that of the dithiobenzoate-capped PSMA9 precursor. This solvatochromatic effect suggests that the problem of thermally labile dithiobenzoate chain-ends cannot be addressed by performing the TFEMA polymerization at lower temperatures.

2.
Biomaterials ; 269: 120345, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33172607

RESUMEN

We present a bone-targeting polymer vesicle with excellent single photon emission computed tomography/computed tomography (SPECT/CT) imaging capability and high antitumor drug delivery efficiency as an integrated platform for the simultaneous diagnosing and treatment of malignant bone tumors. This polymer vesicle can be self-assembled from poly(ε-caprolactone)67-b-poly[(L-glutamic acid)6-stat-(L-glutamic acid-alendronic acid)16] (PCL67-b-P[Glu6-stat-(Glu-ADA)16]), directly in water without the aid of a cosolvent. SPECT/CT dynamically tracked the drug distribution in the bone tumor rabbit models, and the tumor size was significantly reduced from >2.0 cm3 to <0.6 cm3 over 11 days. The pathological analysis demonstrated obvious necrosis and apoptosis of the tumor cells. Overall, this bone-targeting polymer vesicle provides us with a new platform for the combination of real-time diagnosis and therapy of malignant bone tumors.


Asunto(s)
Antineoplásicos , Neoplasias Óseas , Animales , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/tratamiento farmacológico , Huesos , Sistemas de Liberación de Medicamentos , Polímeros , Conejos
3.
Langmuir ; 36(51): 15523-15535, 2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33332972

RESUMEN

Sterically stabilized diblock copolymer nanoparticles are prepared in n-dodecane using polymerization-induced self-assembly. Precursor Pickering macroemulsions are then prepared by the addition of water followed by high-shear homogenization. In the absence of any salt, high-pressure microfluidization of such precursor emulsions leads to the formation of relatively large aqueous droplets with DLS measurements indicating a mean diameter of more than 600 nm. However, systemically increasing the salt concentration produces significantly finer droplets after microfluidization, until a limiting diameter of around 250 nm is obtained at 0.11 M NaCl. The mean size of these aqueous droplets can also be tuned by systematically varying the nanoparticle concentration, applied pressure, and the number of passes through the microfluidizer. The mean number of nanoparticles adsorbed onto each aqueous droplet and their packing efficiency are calculated. SAXS studies conducted on a Pickering nanoemulsion prepared using 0.11 M NaCl confirms that the aqueous droplets are coated with a loosely packed monolayer of nanoparticles. The effect of varying the NaCl concentration within the droplets on their initial rate of Ostwald ripening is investigated using DLS. Finally, the long-term stability of these water-in-oil Pickering nanoemulsions is assessed using analytical centrifugation. The rate of droplet ripening can be substantially reduced by using 0.11 M NaCl instead of pure water. However, increasing the salt concentration up to 0.43 M provided no further improvement in the long-term stability of such nanoemulsions.

4.
Soft Matter ; 16(15): 3657-3668, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32227048

RESUMEN

Sterically-stabilized diblock copolymer nanoparticles (a.k.a. micelles) are prepared directly in non-polar media via polymerization-induced self-assembly (PISA). More specifically, a poly(lauryl methacrylate) chain transfer agent is chain-extended via reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of methyl methacrylate (MMA) to form sterically-stabilized spheres at 20% w/w solids in n-dodecane at 90 °C. Both fully hydrogenous (PLMA39-PMMA55 and PLMA39-PMMA94) and core-deuterated (PLMA39-d8PMMA57 and PLMA39-d8PMMA96) spherical nanoparticles with mean core diameters of approximately 20 nm were prepared using this protocol. After diluting each dispersion in turn to 1.0% w/w with n-dodecane, small-angle X-ray scattering studies confirmed essentially no change in spherical nanoparticle diameter after thermal annealing at 150 °C. Time-resolved small angle neutron scattering was used to examine whether copolymer chain exchange occurs between such nanoparticles at elevated temperatures. Copolymer chain exchange for a binary mixture of PLMA39-PMMA55 and PLMA39-d8PMMA57 nanoparticles produced hybrid (mixed) cores containing both PMMA55 and d8PMMA57 blocks within 3 min at 150 °C. In contrast, a binary mixture of PLMA39-PMMA94 and PLMA39-d8PMMA96 nanoparticles required 8 min at this temperature before no further reduction in neutron scattering intensity could be observed. These observations suggest that the rate of copolymer chain exchange depends on the degree of polymerization of the core-forming block. Relatively slow copolymer chain exchange was also observed at 80 °C, which is below the Tg of the core-forming PMMA block as determined by DSC studies. These observations confirm rapid exchange of individual copolymer chains between sterically-stabilized nanoparticles at elevated temperature. The implications of these findings are briefly discussed in the context of PISA, which is a powerful technique for the synthesis of sterically-stabilized nanoparticles.

5.
Angew Chem Int Ed Engl ; 59(27): 10848-10853, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32267055

RESUMEN

Polymerization-induced self-assembly (PISA) enables the scalable synthesis of functional block copolymer nanoparticles with various morphologies. Herein we exploit this versatile technique to produce so-called "high χ-low N" diblock copolymers that undergo nanoscale phase separation in the solid state to produce sub-10 nm surface features. By varying the degree of polymerization of the stabilizer and core-forming blocks, PISA provides rapid access to a wide range of diblock copolymers, and enables fundamental thermodynamic parameters to be determined. In addition, the pre-organization of copolymer chains within sterically-stabilized nanoparticles that occurs during PISA leads to enhanced phase separation relative to that achieved using solution-cast molecularly-dissolved copolymer chains.

6.
J Am Chem Soc ; 141(34): 13664-13675, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31364361

RESUMEN

Polymerization-induced self-assembly (PISA) is a powerful platform technology for the rational and efficient synthesis of a wide range of block copolymer nano-objects (e.g., spheres, worms or vesicles) in various media. In situ small-angle X-ray scattering (SAXS) studies of reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization have previously provided detailed structural information during self-assembly (see M. J. Derry et al., Chem. Sci. 2016 , 7 , 5078 - 5090 ). However, conducting the analogous in situ SAXS studies during RAFT aqueous emulsion polymerizations poses a formidable technical challenge because the inherently heterogeneous nature of such PISA formulations requires efficient stirring to generate sufficiently small monomer droplets. In the present study, the RAFT aqueous emulsion polymerization of 2-methoxyethyl methacrylate (MOEMA) has been explored for the first time. Chain extension of a relatively short non-ionic poly(glycerol monomethacrylate) (PGMA) precursor block leads to the formation of sterically-stabilized PGMA-PMOEMA spheres, worms or vesicles, depending on the precise reaction conditions. Construction of a suitable phase diagram enables each of these three morphologies to be reproducibly targeted at copolymer concentrations ranging from 10 to 30% w/w solids. High MOEMA conversions are achieved within 2 h at 70 °C, which makes this new PISA formulation well-suited for in situ SAXS studies using a new reaction cell. This bespoke cell enables efficient stirring and hence allows in situ monitoring during RAFT emulsion polymerization for the first time. For example, the onset of micellization and subsequent evolution in particle size can be studied when preparing PGMA29-PMOEMA30 spheres at 10% w/w solids. When targeting PGMA29-PMOEMA70 vesicles under the same conditions, both the micellar nucleation event and the subsequent evolution in the diblock copolymer morphology from spheres to worms to vesicles are observed. These new insights significantly enhance our understanding of the PISA mechanism during RAFT aqueous emulsion polymerization.

7.
J Am Chem Soc ; 140(40): 12980-12988, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30252464

RESUMEN

We report the synthesis of highly transparent poly(stearyl methacrylate)-poly(2,2,2-trifluoroethyl methacrylate) (PSMA-PTFEMA) diblock copolymer nanoparticles via polymerization-induced self-assembly (PISA) in nonpolar media at 70 °C. This was achieved by chain-extending a PSMA precursor block via reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of TFEMA in n-tetradecane. This n-alkane has the same refractive index as the PTFEMA core-forming block at 70 °C, which ensures high light transmittance when targeting 33 nm spherical nanoparticles. Such isorefractivity enables visible absorption spectra to be recorded with minimal light scattering even at 30% w/w solids. However, in situ monitoring of the trithiocarbonate RAFT end-groups during PISA requires selection of a weak n → π* band at 446 nm. Conversion of TFEMA into PTFEMA causes a contraction in the reaction solution volume, leading to an initial increase in absorbance that enables the kinetics of polymerization to be monitored via dilatometry. At ∼98% TFEMA conversion, this 446 nm band remains constant for 2 h at 70 °C, indicating surprisingly high RAFT chain-end fidelity (and hence pseudoliving character) under monomer-starved conditions. In situ 19F NMR spectroscopy studies provide evidence for (i) the onset of micellar nucleation, (ii) solvation of the nanoparticle cores by TFEMA monomer, and (iii) surface plasticization of the nanoparticle cores by n-tetradecane at 70 °C. Finally, the kinetics of RAFT chain-end removal can be conveniently monitored by in situ visible absorption spectroscopy: addition of excess initiator at 70 °C causes complete discoloration of the dispersion, with small-angle X-ray scattering studies confirming no change in nanoparticle morphology under these conditions.

8.
Chemistry ; 21(6): 2701-4, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25491134

RESUMEN

A Ni-catalyzed benzannulation reaction of cyclobutenones and alkynes provides a rapid synthesis of heavily substituted phenols. The regioselectivity of this reaction can be modulated by variation of substituents on the alkyne. Though the incorporation of Lewis basic donors provides modest selectivities, the use of aryl substituents can provide high levels of regiocontrol. Finally, alkynylboronates derived from alkyl-substituted acetylenes provide both high yields and regioselectivities. This study suggests that alkynes bearing one sp(2) - and one sp(3) -based substituent can undergo benzannulation with high levels of regiocontrol whereby the sp(3) -based group is incorporated ortho-to the phenolic OH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...