Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Radiat Res ; 202(3): 510-522, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39066627

RESUMEN

Animal studies are needed that best simulate a large-scale, inhomogeneous body exposure after a radiological or nuclear incident and that provides a platform for future development of medical countermeasures. A partial-body irradiation (PBI) model using 137Cs gamma rays with hind limb (tibia) shielding was developed and assessed for the sequalae of radiation injuries to gastrointestinal tract, bone marrow (BM) and lung and among different genetic mouse strains (C57BL/6J, C57L/J, CBA/J and FVB/NJ). In this case, a marginal level of BM shielding (∼2%) provided adequate protection against lethality from infection and hemorrhage and enabled escalation of radiation doses with evaluation of both acute and delayed radiation syndromes. A steep radiation dose-dependent body weight loss was observed over the first 5 days attributed to enteritis with C57BL/6J mice appearing to be the most sensitive strain. Peripheral blood cell analysis revealed significant depression and recovery of leukocytes and platelets over the first month after PBI and were comparable among the four different mouse strains. Latent pulmonary injury was observed on micro-CT imaging at 4 months in C57L/J mice and confirmed histologically as severe pneumonitis that was lethal at 12 Gy. The lethality and radiological densitometry (HUs) dose responses were comparable to previous studies on C57L/J mice after total-body irradiation (TBI) and BM transplant rescue as well as after localized whole-thorax irradiation (WTI). Indeed, the lethal radiation doses and latency appeared similar for pneumonitis appearing in rhesus macaques after WTI or PBI as well as predicted for patients given systemic radiotherapy. In contrast, PBI treatment of C57BL/6 mice at a higher dose of 14 Gy had far longer survival times and developed extreme and debilitating pIeural effusions; an anomaly as similarly reported in previous thorax irradiation studies on this mouse strain. In summary, a radiation exposure model that delivers PBI to unanesthetized mice in a device that provides consistent shielding of the hind limb BM was developed for 137Cs gamma rays with physical characteristics and relevance to relatively high photon energies expected from the detonation of a nuclear device or accidental release of ionizing radiation. Standard strains such as C57BL/6J mice may be used reliably for early GI or hematological radiation syndromes while the C57L/J mouse strain stands out as the most appropriate for evaluating the delayed pulmonary effects of acute radiation exposure and recapitulating this disease in humans.


Asunto(s)
Rayos gamma , Animales , Ratones , Rayos gamma/efectos adversos , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/etiología , Traumatismos Experimentales por Radiación/diagnóstico por imagen , Relación Dosis-Respuesta en la Radiación , Masculino , Ratones Endogámicos C57BL , Femenino , Especificidad de la Especie , Radioisótopos de Cesio , Médula Ósea/efectos de la radiación , Médula Ósea/patología
2.
Commun Med (Lond) ; 3(1): 108, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558833

RESUMEN

BACKGROUND: Genetically engineered mouse models (GEMMs) of cancer are powerful tools to study mechanisms of disease progression and therapy response, yet little is known about how these models respond to multimodality therapy used in patients. Radiation therapy (RT) is frequently used to treat localized cancers with curative intent, delay progression of oligometastases, and palliate symptoms of metastatic disease. METHODS: Here we report the development, testing, and validation of a platform to immobilize and target tumors in mice with stereotactic ablative RT (SART). Xenograft and autochthonous tumor models were treated with hypofractionated ablative doses of radiotherapy. RESULTS: We demonstrate that hypofractionated regimens used in clinical practice can be effectively delivered in mouse models. SART alters tumor stroma and the immune environment, improves survival in GEMMs of primary prostate and colorectal cancer, and synergizes with androgen deprivation in prostate cancer. Complete pathologic responses were achieved in xenograft models, but not in GEMMs. CONCLUSIONS: While SART is capable of fully ablating xenografts, it is unable to completely eradicate disease in GEMMs, arguing that resistance to potentially curative therapy can be modeled in GEMMs.


Mice can be used to model the types of cancer seen in people to investigate the effects of cancer therapies, such as radiation. Here, we apply radiation therapy treatments that are able to cure cancer in humans to mice that have cancer of the prostate or colorectum. We show that the mice do not experience many side effects and that the tumours reduce in size, but in some cases show progression after treatment. Our study demonstrates that mice can be used to better understand how human cancers respond to radiation treatment, which can lead to the development of improved treatments and treatment schedules.

3.
Radiat Res ; 184(4): 378-91, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26401594

RESUMEN

To ensure reliability and reproducibility of radiobiological data, it is necessary to standardize dosimetry practices across all research institutions. The photoelectric effect predominates over other interactions at low energy and in high atomic number materials such as bone, which can lead to increased dose deposition in soft tissue adjacent to mineral bone due to secondary radiation particles. This may produce radiation effects that deviate from higher energy photon irradiation that best model exposure from clinical radiotherapy or nuclear incidences. Past theoretical considerations have indicated that this process should affect radiation exposure of neighboring bone marrow (BM) and account for reported differences in relative biological effectiveness (RBE) for hematopoietic failure in rodents. The studies described herein definitively estimate spatial dose distribution and biological effectiveness within the BM compartment for (137)Cs gamma rays and 320 kVp X rays at two levels of filtration: 1 and 4 mm Cu half-value layer (HVL). In these studies, we performed: 1. Monte Carlo simulations on a 5 µm resolution model of mouse vertebrae and femur derived from micro-CT images; 2. In vitro biological experiments irradiating BM cells plated directly on the surface of a bone-equivalent material (BEM); and 3. An in vivo study on BM cell survival in irradiated live mice. Simulation results showed that the relative dose increased in proximity to bone at the lower radiation energies and produced averaged values of relative dose over the entire BM volume within imaged trabecular bone of 1.17, 1.08 and 1.01 for beam qualities of 1 mm Cu HVL, 4 mm Cu HVL and (137)Cs, respectively. In accordance with Monte Carlo simulations, in vitro irradiation of BM cells located on BEM and in vivo whole-body irradiation at a prescribed dose to soft tissue of 6 Gy produced relative cell killing of hematopoietic progenitors (CFU-C) that significantly increased for the 1 mm Cu HVL X rays compared to radiation exposures of higher photon energies. Thus, we propose that X rays of the highest possible kVp and filtration be used to investigate radiation effects on the hematopoietic system, as this will allow for better comparisons with high-energy photon exposures applied in radiotherapy or as anticipated in a nuclear event.


Asunto(s)
Médula Ósea/efectos de la radiación , Fotones , Rayos X , Animales , Muerte Celular/efectos de la radiación , Células Madre Hematopoyéticas/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos C57BL , Dosis de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...