Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Stem Cell ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38718796

RESUMEN

Mutations in ARID1B, a member of the mSWI/SNF complex, cause severe neurodevelopmental phenotypes with elusive mechanisms in humans. The most common structural abnormality in the brain of ARID1B patients is agenesis of the corpus callosum (ACC), characterized by the absence of an interhemispheric white matter tract that connects distant cortical regions. Here, we find that neurons expressing SATB2, a determinant of callosal projection neuron (CPN) identity, show impaired maturation in ARID1B+/- neural organoids. Molecularly, a reduction in chromatin accessibility of genomic regions targeted by TCF-like, NFI-like, and ARID-like transcription factors drives the differential expression of genes required for corpus callosum (CC) development. Through an in vitro model of the CC tract, we demonstrate that this transcriptional dysregulation impairs the formation of long-range axonal projections, causing structural underconnectivity. Our study uncovers new functions of the mSWI/SNF during human corticogenesis, identifying cell-autonomous axonogenesis defects in SATB2+ neurons as a cause of ACC in ARID1B patients.

3.
EMBO J ; 42(22): e113213, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37842725

RESUMEN

The establishment and maintenance of apical-basal polarity is a fundamental step in brain development, instructing the organization of neural progenitor cells (NPCs) and the developing cerebral cortex. Particularly, basally located extracellular matrix (ECM) is crucial for this process. In vitro, epithelial polarization can be achieved via endogenous ECM production, or exogenous ECM supplementation. While neuroepithelial development is recapitulated in neural organoids, the effects of different ECM sources in tissue morphogenesis remain underexplored. Here, we show that exposure to a solubilized basement membrane matrix substrate, Matrigel, at early neuroepithelial stages causes rapid tissue polarization and rearrangement of neuroepithelial architecture. In cultures exposed to pure ECM components or unexposed to any exogenous ECM, polarity acquisition is slower and driven by endogenous ECM production. After the onset of neurogenesis, tissue architecture and neuronal differentiation are largely independent of the initial ECM source, but Matrigel exposure has long-lasting effects on tissue patterning. These results advance the knowledge on mechanisms of exogenously and endogenously guided morphogenesis, demonstrating the self-sustainability of neuroepithelial cultures by endogenous processes.


Asunto(s)
Matriz Extracelular , Organoides , Humanos , Morfogénesis
4.
Nature ; 621(7978): 373-380, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37704762

RESUMEN

The development of the human brain involves unique processes (not observed in many other species) that can contribute to neurodevelopmental disorders1-4. Cerebral organoids enable the study of neurodevelopmental disorders in a human context. We have developed the CRISPR-human organoids-single-cell RNA sequencing (CHOOSE) system, which uses verified pairs of guide RNAs, inducible CRISPR-Cas9-based genetic disruption and single-cell transcriptomics for pooled loss-of-function screening in mosaic organoids. Here we show that perturbation of 36 high-risk autism spectrum disorder genes related to transcriptional regulation uncovers their effects on cell fate determination. We find that dorsal intermediate progenitors, ventral progenitors and upper-layer excitatory neurons are among the most vulnerable cell types. We construct a developmental gene regulatory network of cerebral organoids from single-cell transcriptomes and chromatin modalities and identify autism spectrum disorder-associated and perturbation-enriched regulatory modules. Perturbing members of the BRG1/BRM-associated factor (BAF) chromatin remodelling complex leads to enrichment of ventral telencephalon progenitors. Specifically, mutating the BAF subunit ARID1B affects the fate transition of progenitors to oligodendrocyte and interneuron precursor cells, a phenotype that we confirmed in patient-specific induced pluripotent stem cell-derived organoids. Our study paves the way for high-throughput phenotypic characterization of disease susceptibility genes in organoid models with cell state, molecular pathway and gene regulatory network readouts.


Asunto(s)
Trastorno del Espectro Autista , Encéfalo , Discapacidades del Desarrollo , Organoides , Análisis de Expresión Génica de una Sola Célula , Humanos , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Trastorno Autístico/complicaciones , Trastorno Autístico/genética , Trastorno Autístico/patología , Encéfalo/citología , Encéfalo/metabolismo , Linaje de la Célula/genética , Cromatina/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Edición Génica , Mutación con Pérdida de Función , Mosaicismo , Neuronas/metabolismo , Neuronas/patología , Organoides/citología , Organoides/metabolismo , ARN Guía de Sistemas CRISPR-Cas , Transcripción Genética
5.
Cell ; 185(15): 2756-2769, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35868278

RESUMEN

For decades, insight into fundamental principles of human biology and disease has been obtained primarily by experiments in animal models. While this has allowed researchers to understand many human biological processes in great detail, some developmental and disease mechanisms have proven difficult to study due to inherent species differences. The advent of organoid technology more than 10 years ago has established laboratory-grown organ tissues as an additional model system to recapitulate human-specific aspects of biology. The use of human 3D organoids, as well as other advances in single-cell technologies, has revealed unprecedented insights into human biology and disease mechanisms, especially those that distinguish humans from other species. This review highlights novel advances in organoid biology with a focus on how organoid technology has generated a better understanding of human-specific processes in development and disease.


Asunto(s)
Modelos Biológicos , Organoides , Animales , Humanos
6.
Science ; 375(6579): eabf5546, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35084981

RESUMEN

Evolutionary development of the human brain is characterized by the expansion of various brain regions. Here, we show that developmental processes specific to humans are responsible for malformations of cortical development (MCDs), which result in developmental delay and epilepsy in children. We generated a human cerebral organoid model for tuberous sclerosis complex (TSC) and identified a specific neural stem cell type, caudal late interneuron progenitor (CLIP) cells. In TSC, CLIP cells over-proliferate, generating excessive interneurons, brain tumors, and cortical malformations. Epidermal growth factor receptor inhibition reduces tumor burden, identifying potential treatment options for TSC and related disorders. The identification of CLIP cells reveals the extended interneuron generation in the human brain as a vulnerability for disease. In addition, this work demonstrates that analyzing MCDs can reveal fundamental insights into human-specific aspects of brain development.


Asunto(s)
Neoplasias Encefálicas/patología , Encéfalo/patología , Interneuronas/citología , Células-Madre Neurales/fisiología , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/patología , Encéfalo/embriología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Carcinogénesis , Linaje de la Célula , Proliferación Celular , Progresión de la Enfermedad , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Perfilación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas , Interneuronas/fisiología , Pérdida de Heterocigocidad , Células-Madre Neurales/citología , Organoides , RNA-Seq , Serina-Treonina Quinasas TOR/metabolismo , Esclerosis Tuberosa/tratamiento farmacológico , Esclerosis Tuberosa/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
8.
Cell Stem Cell ; 22(4): 543-558.e12, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625069

RESUMEN

Stem cell-specific transcriptional networks are well known to control pluripotency, but constitutive cellular processes such as mRNA splicing and protein synthesis can add complex layers of regulation with poorly understood effects on cell-fate decisions. Here, we show that the RNA binding protein HTATSF1 controls embryonic stem cell differentiation by regulating multiple aspects of RNA processing during ribosome biogenesis. HTATSF1, in a complex with splicing factor SF3B1, controls intron removal from ribosomal protein transcripts and regulates ribosomal RNA transcription and processing, thereby controlling 60S ribosomal abundance and protein synthesis. HTATSF1-dependent protein synthesis is essential for naive pre-implantation epiblast to transition into post-implantation epiblast, a stage with transiently low protein synthesis, and further differentiation toward neuroectoderm. Together, these results identify coordinated regulation of ribosomal RNA and protein synthesis by HTATSF1 and show that this essential mechanism controls protein synthesis during early mammalian embryogenesis.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , Animales , Humanos , Ratones , Transactivadores/metabolismo
9.
Cell Stem Cell ; 22(2): 143-145, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29451854

RESUMEN

Neural stem cells in the ventricular-subventricular zone of the adult brain continuously generate differentiated neurons without depleting the stem cell pool. In this issue of Cell Stem Cell, Obernier et al. (2018) present the surprising finding that this occurs through mostly symmetric divisions that either generate two differentiating or two self-renewing daughter cells.


Asunto(s)
División Celular , Neurogénesis , Diferenciación Celular , Autorrenovación de las Células , Células-Madre Neurales
10.
Nat Biotechnol ; 35(7): 659-666, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28562594

RESUMEN

Three-dimensional cell culture models have either relied on the self-organizing properties of mammalian cells or used bioengineered constructs to arrange cells in an organ-like configuration. While self-organizing organoids excel at recapitulating early developmental events, bioengineered constructs reproducibly generate desired tissue architectures. Here, we combine these two approaches to reproducibly generate human forebrain tissue while maintaining its self-organizing capacity. We use poly(lactide-co-glycolide) copolymer (PLGA) fiber microfilaments as a floating scaffold to generate elongated embryoid bodies. Microfilament-engineered cerebral organoids (enCORs) display enhanced neuroectoderm formation and improved cortical development. Furthermore, reconstitution of the basement membrane leads to characteristic cortical tissue architecture, including formation of a polarized cortical plate and radial units. Thus, enCORs model the distinctive radial organization of the cerebral cortex and allow for the study of neuronal migration. Our data demonstrate that combining 3D cell culture with bioengineering can increase reproducibility and improve tissue architecture.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Organoides/crecimiento & desarrollo , Prosencéfalo/crecimiento & desarrollo , Ingeniería de Tejidos/métodos , Células Cultivadas , Regeneración Tisular Dirigida/métodos , Humanos , Células-Madre Neurales/citología , Técnicas de Cultivo de Órganos/métodos , Organoides/citología , Prosencéfalo/citología
11.
Cell Stem Cell ; 12(2): 204-14, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23395445

RESUMEN

Memory impairment has been associated with age-related decline in adult hippocampal neurogenesis. Although Notch, bone morphogenetic protein, and Wnt signaling pathways are known to regulate multiple aspects of adult neural stem cell function, the molecular basis of declining neurogenesis in the aging hippocampus remains unknown. Here, we show that expression of the Wnt antagonist Dickkopf-1 (Dkk1) increases with age and that its loss enhances neurogenesis in the hippocampus. Neural progenitors with inducible loss of Dkk1 increase their Wnt activity, which leads to enhanced self-renewal and increased generation of immature neurons. This Wnt-expanded progeny subsequently matures into glutamatergic granule neurons with increased dendritic complexity. As a result, mice deficient in Dkk1 exhibit enhanced spatial working memory and memory consolidation and also show improvements in affective behavior. Taken together, our findings show that upregulating Wnt signaling by reducing Dkk1 expression can counteract age-related decrease in neurogenesis and its associated cognitive decline.


Asunto(s)
Cognición/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neurogénesis/fisiología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Hipocampo/citología , Péptidos y Proteínas de Señalización Intercelular/genética , Memoria a Corto Plazo/fisiología , Ratones , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología
12.
PLoS One ; 6(2): e15786, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21347250

RESUMEN

Dickkopf1 (Dkk1) is a Wnt/ß-catenin inhibitor that participates in many processes during embryonic development. One of its roles during embryogenesis is to induce head formation, since Dkk1-null mice lack head structures anterior to midbrain. The Wnt/ß-catenin pathway is also known to regulate different aspects of ventral midbrain (VM) dopaminergic (DA) neuron development and, in vitro, Dkk1-mediated inhibition of the Wnt/ß-catenin pathway improves the DA differentiation in mouse embryonic stem cells (mESC). However, the in vivo function of Dkk1 on the development of midbrain DA neurons remains to be elucidated. Here we examined Dkk1(+/-) embryos and found that Dkk1 is required for the differentiation of DA precursors/neuroblasts into DA neurons at E13.5. This deficit persisted until E17.5, when a defect in the number and distribution of VM DA neurons was detected. Furthermore, analysis of the few Dkk1(-/-) embryos that survived until E17.5 revealed a more severe loss of midbrain DA neurons and morphogenesis defects. Our results thus show that Dkk1 is required for midbrain DA differentiation and morphogenesis.


Asunto(s)
Diferenciación Celular , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mesencéfalo/citología , Mesencéfalo/crecimiento & desarrollo , Morfogénesis , Animales , Recuento de Células , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/genética , Mesencéfalo/metabolismo , Ratones , Mutación , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo
13.
Cell Stem Cell ; 6(5): 403-4, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20452311

RESUMEN

The laminin receptor Integrin alpha6beta1 anchors adult neural stem cells to the niche vasculature. In this issue of Cell Stem Cell, Lathia et al. (2010) show that glioblastoma stem cells highly express integrin alpha6 and that their interaction with laminin on endothelial cells directly regulates their tumorigenic capacity.

14.
Immunity ; 32(2): 240-52, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20153221

RESUMEN

Injury to the central nervous system initiates an uncontrolled inflammatory response that results in both tissue repair and destruction. Here, we showed that, in rodents and humans, injury to the spinal cord triggered surface expression of CD95 ligand (CD95L, FasL) on peripheral blood myeloid cells. CD95L stimulation of CD95 on these cells activated phosphoinositide 3-kinase (PI3K) and metalloproteinase-9 (MMP-9) via recruitment and activation of Syk kinase, ultimately leading to increased migration. Exclusive CD95L deletion in myeloid cells greatly decreased the number of neutrophils and macrophages infiltrating the injured spinal cord or the inflamed peritoneum after thioglycollate injection. Importantly, deletion of myeloid CD95L, but not of CD95 on neural cells, led to functional recovery of spinal injured animals. Our results indicate that CD95L acts on peripheral myeloid cells to induce tissue damage. Thus, neutralization of CD95L should be considered as a means to create a controlled beneficial inflammatory response.


Asunto(s)
Movimiento Celular , Proteína Ligando Fas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Mieloides/metabolismo , Peritonitis/inmunología , Proteínas Tirosina Quinasas/metabolismo , Animales , Células Cultivadas , Proteína Ligando Fas/genética , Proteína Ligando Fas/inmunología , Humanos , Inflamación , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/inmunología , Células Mieloides/patología , Peritoneo/inmunología , Peritoneo/patología , Peritonitis/inducido químicamente , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Médula Espinal/inmunología , Médula Espinal/patología , Quinasa Syk , Tioglicolatos/administración & dosificación
15.
Cell Stem Cell ; 5(2): 178-90, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19664992

RESUMEN

Adult neurogenesis persists in the subventricular zone and the dentate gyrus and can be induced upon central nervous system injury. However, the final contribution of newborn neurons to neuronal networks is limited. Here we show that in neural stem cells, stimulation of the "death receptor" CD95 does not trigger apoptosis but unexpectedly leads to increased stem cell survival and neuronal specification. These effects are mediated via activation of the Src/PI3K/AKT/mTOR signaling pathway, ultimately leading to a global increase in protein translation. Induction of neurogenesis by CD95 was further confirmed in the ischemic CA1 region, in the naive dentate gyrus, and after forced expression of CD95L in the adult subventricular zone. Lack of hippocampal CD95 resulted in a reduction in neurogenesis and working memory deficits. Following global ischemia, CD95-mediated brain repair rescued behavioral impairment. Thus, we identify the CD95/CD95L system as an instructive signal for ongoing and injury-induced neurogenesis.


Asunto(s)
Células Madre Adultas/metabolismo , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Proteína Ligando Fas/metabolismo , Neurogénesis/fisiología , Receptor fas/metabolismo , Células Madre Adultas/trasplante , Animales , Isquemia Encefálica/terapia , Femenino , Expresión Génica/fisiología , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal/fisiología , Trasplante de Células Madre , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA