Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(5): 100750, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513891

RESUMEN

Spatial tissue proteomics integrating whole-slide imaging, laser microdissection, and ultrasensitive mass spectrometry is a powerful approach to link cellular phenotypes to functional proteome states in (patho)physiology. To be applicable to large patient cohorts and low sample input amounts, including single-cell applications, loss-minimized and streamlined end-to-end workflows are key. We here introduce an automated sample preparation protocol for laser microdissected samples utilizing the cellenONE robotic system, which has the capacity to process 192 samples in 3 h. Following laser microdissection collection directly into the proteoCHIP LF 48 or EVO 96 chip, our optimized protocol facilitates lysis, formalin de-crosslinking, and tryptic digest of low-input archival tissue samples. The seamless integration with the Evosep ONE LC system by centrifugation allows 'on-the-fly' sample clean-up, particularly pertinent for laser microdissection workflows. We validate our method in human tonsil archival tissue, where we profile proteomes of spatially-defined B-cell, T-cell, and epithelial microregions of 4000 µm2 to a depth of ∼2000 proteins and with high cell type specificity. We finally provide detailed equipment templates and experimental guidelines for broad accessibility.


Asunto(s)
Captura por Microdisección con Láser , Proteómica , Flujo de Trabajo , Humanos , Proteómica/métodos , Captura por Microdisección con Láser/métodos , Tonsila Palatina/citología , Tonsila Palatina/metabolismo , Automatización , Proteoma , Linfocitos B/metabolismo , Linfocitos B/citología , Espectrometría de Masas/métodos , Linfocitos T/metabolismo , Linfocitos T/citología
2.
Br J Cancer ; 130(8): 1249-1260, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38361045

RESUMEN

BACKGROUND: The aim of this study was to analyse transcriptomic differences between primary and recurrent high-grade serous ovarian carcinoma (HGSOC) to identify prognostic biomarkers. METHODS: We analysed 19 paired primary and recurrent HGSOC samples using targeted RNA sequencing. We selected the best candidates using in silico survival and pathway analysis and validated the biomarkers using immunohistochemistry on a cohort of 44 paired samples, an additional cohort of 504 primary HGSOCs and explored their function. RESULTS: We identified 233 differential expressed genes. Twenty-three showed a significant prognostic value for PFS and OS in silico. Seven markers (AHRR, COL5A2, FABP4, HMGCS2, ITGA5, SFRP2 and WNT9B) were chosen for validation at the protein level. AHRR expression was higher in primary tumours (p < 0.0001) and correlated with better patient survival (p < 0.05). Stromal SFRP2 expression was higher in recurrent samples (p = 0.009) and protein expression in primary tumours was associated with worse patient survival (p = 0.022). In multivariate analysis, tumour AHRR and SFRP2 remained independent prognostic markers. In vitro studies supported the anti-tumorigenic role of AHRR and the oncogenic function of SFRP2. CONCLUSIONS: Our results underline the relevance of AHRR and SFRP2 proteins in aryl-hydrocarbon receptor and Wnt-signalling, respectively, and might lead to establishing them as biomarkers in HGSOC.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Femenino , Humanos , Pronóstico , Neoplasias Ováricas/patología , Perfilación de la Expresión Génica , Biomarcadores de Tumor/genética , Cistadenocarcinoma Seroso/patología , Proteínas de la Membrana/genética , Proteínas Represoras/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
3.
EMBO Rep ; 25(2): 902-926, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177924

RESUMEN

Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1, FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and reduced levels of viral antigen in lungs during the early stages of infection. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins and provides molecular insight into the possible underlying molecular defects in fragile X syndrome.


Asunto(s)
COVID-19 , Síndrome del Cromosoma X Frágil , Humanos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Péptidos/metabolismo , Proteínas de Unión al ARN/genética , SARS-CoV-2
4.
Cell Syst ; 14(11): 1002-1014.e5, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37909047

RESUMEN

Spatial proteomics combining microscopy-based cell phenotyping with ultrasensitive mass-spectrometry-based proteomics is an emerging and powerful concept to study cell function and heterogeneity in (patho)physiology. However, optimized workflows that preserve morphological information for phenotype discovery and maximize proteome coverage of few or even single cells from laser microdissected tissue are currently lacking. Here, we report a robust and scalable workflow for the proteomic analysis of ultra-low-input archival material. Benchmarking in murine liver resulted in up to 2,000 quantified proteins from single hepatocyte contours and nearly 5,000 proteins from 50-cell regions. Applied to human tonsil, we profiled 146 microregions including T and B lymphocyte niches and quantified cell-type-specific markers, cytokines, and transcription factors. These data also highlighted proteome dynamics within activated germinal centers, illuminating sites undergoing B cell proliferation and somatic hypermutation. This approach has broad implications in biomedicine, including early disease profiling and drug target and biomarker discovery. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Proteoma , Proteómica , Humanos , Animales , Ratones , Proteoma/metabolismo , Proteómica/métodos , Espectrometría de Masas/métodos
5.
bioRxiv ; 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37693415

RESUMEN

Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1 and FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and have delayed disease onset in vivo. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins for efficient infection and provides molecular insight to the possible underlying molecular defects in fragile X syndrome.

7.
Gastroenterology ; 165(1): 121-132.e5, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36966943

RESUMEN

BACKGROUND & AIMS: Colonic adenomatous polyps, or adenomas, are frequent precancerous lesions and the origin of most cases of colorectal adenocarcinoma. However, we know from epidemiologic studies that although most colorectal cancers (CRCs) originate from adenomas, only a small fraction of adenomas (3%-5%) ever progress to cancer. At present, there are no molecular markers to guide follow-up surveillance programs. METHODS: We profiled, by mass spectrometry-based proteomics combined with machine learning analysis, a selected cohort of formalin-fixed, paraffin-embedded high-grade (HG) adenomas with long clinical follow-up, collected as part of the Danish national screening program. We grouped subjects in the cohort according to their subsequent history of findings: a nonmetachronous advanced neoplasia group (G0), with no new HG adenomas or CRCs up to 10 years after polypectomy, and a metachronous advanced neoplasia group (G1) where individuals developed a new HG adenoma or CRC within 5 years of diagnosis. RESULTS: We generated a proteome dataset from 98 selected HG adenoma samples, including 20 technical replicates, of which 45 samples belonged to the nonmetachronous advanced neoplasia group and 53 to the metachronous advanced neoplasia group. The clear distinction of these 2 groups seen in a uniform manifold approximation and projection plot indicated that the information contained within the abundance of the ∼5000 proteins was sufficient to predict the future occurrence of HG adenomas or development of CRC. CONCLUSIONS: We performed an in-depth analysis of quantitative proteomic data from 98 resected adenoma samples using various novel algorithms and statistical packages and found that their proteome can predict development of metachronous advanced lesions and progression several years in advance.


Asunto(s)
Adenoma , Pólipos del Colon , Neoplasias Colorrectales , Neoplasias Primarias Secundarias , Humanos , Proteoma , Proteómica , Neoplasias Colorrectales/patología , Pólipos del Colon/patología , Adenoma/patología , Neoplasias Primarias Secundarias/patología , Colonoscopía , Factores de Riesgo
8.
Mol Cell ; 82(18): 3350-3365.e7, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36049481

RESUMEN

It has been proposed that ATR kinase senses the completion of DNA replication to initiate the S/G2 transition. In contrast to this model, we show here that the TRESLIN-MTBP complex prevents a premature entry into G2 from early S-phase independently of ATR/CHK1 kinases. TRESLIN-MTBP acts transiently at pre-replication complexes (preRCs) to initiate origin firing and is released after the subsequent recruitment of CDC45. This dynamic behavior of TRESLIN-MTBP implements a monitoring system that checks the activation of replication forks and senses the rate of origin firing to prevent the entry into G2. This system detects the decline in the number of origins of replication that naturally occurs in very late S, which is the signature that cells use to determine the completion of DNA replication and permit the S/G2 transition. Our work introduces TRESLIN-MTBP as a key player in cell-cycle control independent of canonical checkpoints.


Asunto(s)
Proteínas de Ciclo Celular , Replicación del ADN , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Proteínas de Unión al ADN/genética
9.
Nat Neurosci ; 25(7): 944-955, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35726057

RESUMEN

Progressive multiple sclerosis (MS) is characterized by unrelenting neurodegeneration, which causes cumulative disability and is refractory to current treatments. Drug development to prevent disease progression is an urgent clinical need yet is constrained by an incomplete understanding of its complex pathogenesis. Using spatial transcriptomics and proteomics on fresh-frozen human MS brain tissue, we identified multicellular mechanisms of progressive MS pathogenesis and traced their origin in relation to spatially distributed stages of neurodegeneration. By resolving ligand-receptor interactions in local microenvironments, we discovered defunct trophic and anti-inflammatory intercellular communications within areas of early neuronal decline. Proteins associated with neuronal damage in patient samples showed mechanistic concordance with published in vivo knockdown and central nervous system (CNS) disease models, supporting their causal role and value as potential therapeutic targets in progressive MS. Our findings provide a new framework for drug development strategies, rooted in an understanding of the complex cellular and signaling dynamics in human diseased tissue that facilitate this debilitating disease.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Esclerosis Múltiple , Enfermedades del Sistema Nervioso Central/complicaciones , Progresión de la Enfermedad , Humanos , Esclerosis Múltiple/patología , Neuronas/metabolismo , Proteómica
10.
Nat Biotechnol ; 40(8): 1231-1240, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35590073

RESUMEN

Despite the availabilty of imaging-based and mass-spectrometry-based methods for spatial proteomics, a key challenge remains connecting images with single-cell-resolution protein abundance measurements. Here, we introduce Deep Visual Proteomics (DVP), which combines artificial-intelligence-driven image analysis of cellular phenotypes with automated single-cell or single-nucleus laser microdissection and ultra-high-sensitivity mass spectrometry. DVP links protein abundance to complex cellular or subcellular phenotypes while preserving spatial context. By individually excising nuclei from cell culture, we classified distinct cell states with proteomic profiles defined by known and uncharacterized proteins. In an archived primary melanoma tissue, DVP identified spatially resolved proteome changes as normal melanocytes transition to fully invasive melanoma, revealing pathways that change in a spatial manner as cancer progresses, such as mRNA splicing dysregulation in metastatic vertical growth that coincides with reduced interferon signaling and antigen presentation. The ability of DVP to retain precise spatial proteomic information in the tissue context has implications for the molecular profiling of clinical samples.


Asunto(s)
Melanoma , Proteómica , Humanos , Captura por Microdisección con Láser/métodos , Espectrometría de Masas/métodos , Melanoma/genética , Proteoma/química , Proteómica/métodos
11.
EMBO J ; 41(9): e110145, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35349166

RESUMEN

Conjugation of ubiquitin (Ub) to numerous substrate proteins regulates virtually all cellular processes. Eight distinct ubiquitin polymer linkages specifying different functional outcomes are generated in cells. However, the roles of some atypical poly-ubiquitin topologies, in particular linkages via lysine 27 (K27), remain poorly understood due to a lack of tools for their specific detection and manipulation. Here, we adapted a cell-based ubiquitin replacement strategy to enable selective and conditional abrogation of K27-linked ubiquitylation, revealing that this ubiquitin linkage type is essential for proliferation of human cells. We demonstrate that K27-linked ubiquitylation is predominantly a nuclear modification whose ablation deregulates nuclear ubiquitylation dynamics and impairs cell cycle progression in an epistatic manner with inactivation of the ATPase p97/VCP. Moreover, we show that a p97-proteasome pathway model substrate (Ub(G76V)-GFP) is directly modified by K27-linked ubiquitylation, and that disabling the formation of K27-linked ubiquitin signals or blocking their decoding via overexpression of the K27 linkage-specific binder UCHL3 impedes Ub(G76V)-GFP turnover at the level of p97 function. Our findings suggest a critical role of K27-linked ubiquitylation in supporting cell fitness by facilitating p97-dependent processing of ubiquitylated nuclear proteins.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Núcleo Celular/metabolismo , Proliferación Celular , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación
12.
Nat Biotechnol ; 40(5): 692-702, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35102292

RESUMEN

Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of clinically relevant knowledge across multiple biomedical databases and publications, pose a challenge to data integration. Here we present the Clinical Knowledge Graph (CKG), an open-source platform currently comprising close to 20 million nodes and 220 million relationships that represent relevant experimental data, public databases and literature. The graph structure provides a flexible data model that is easily extendable to new nodes and relationships as new databases become available. The CKG incorporates statistical and machine learning algorithms that accelerate the analysis and interpretation of typical proteomics workflows. Using a set of proof-of-concept biomarker studies, we show how the CKG might augment and enrich proteomics data and help inform clinical decision-making.


Asunto(s)
Bases del Conocimiento , Medicina de Precisión/métodos , Proteómica , Algoritmos , Toma de Decisiones Asistida por Computador , Aprendizaje Automático , Reconocimiento de Normas Patrones Automatizadas , Medicina de Precisión/normas , Proteómica/normas , Proteómica/estadística & datos numéricos
13.
Mol Syst Biol ; 18(3): e10798, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35226415

RESUMEN

Single-cell technologies are revolutionizing biology but are today mainly limited to imaging and deep sequencing. However, proteins are the main drivers of cellular function and in-depth characterization of individual cells by mass spectrometry (MS)-based proteomics would thus be highly valuable and complementary. Here, we develop a robust workflow combining miniaturized sample preparation, very low flow-rate chromatography, and a novel trapped ion mobility mass spectrometer, resulting in a more than 10-fold improved sensitivity. We precisely and robustly quantify proteomes and their changes in single, FACS-isolated cells. Arresting cells at defined stages of the cell cycle by drug treatment retrieves expected key regulators. Furthermore, it highlights potential novel ones and allows cell phase prediction. Comparing the variability in more than 430 single-cell proteomes to transcriptome data revealed a stable-core proteome despite perturbation, while the transcriptome appears stochastic. Our technology can readily be applied to ultra-high sensitivity analyses of tissue material, posttranslational modifications, and small molecule studies from small cell counts to gain unprecedented insights into cellular heterogeneity in health and disease.


Asunto(s)
Proteoma , Proteómica , Espectrometría de Masas/métodos , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Proteómica/métodos , Flujo de Trabajo
14.
Nat Commun ; 12(1): 6761, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34799561

RESUMEN

Viral proteins make extensive use of short peptide interaction motifs to hijack cellular host factors. However, most current large-scale methods do not identify this important class of protein-protein interactions. Uncovering peptide mediated interactions provides both a molecular understanding of viral interactions with their host and the foundation for developing novel antiviral reagents. Here we describe a viral peptide discovery approach covering 23 coronavirus strains that provides high resolution information on direct virus-host interactions. We identify 269 peptide-based interactions for 18 coronaviruses including a specific interaction between the human G3BP1/2 proteins and an ΦxFG peptide motif in the SARS-CoV-2 nucleocapsid (N) protein. This interaction supports viral replication and through its ΦxFG motif N rewires the G3BP1/2 interactome to disrupt stress granules. A peptide-based inhibitor disrupting the G3BP1/2-N interaction dampened SARS-CoV-2 infection showing that our results can be directly translated into novel specific antiviral reagents.


Asunto(s)
Factores de Integración del Huésped/metabolismo , SARS-CoV-2/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , ADN Helicasas/metabolismo , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Replicación Viral/fisiología
15.
J Ovarian Res ; 14(1): 140, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686201

RESUMEN

BACKGROUND: Poly (ADP)-ribose polymerase (PARP) inhibitors have entered routine clinical practice for the treatment of high-grade serous ovarian cancer (HGSOC), yet the molecular mechanisms underlying treatment response to PARP1 inhibition (PARP1i) are not fully understood. METHODS: Here, we used unbiased mass spectrometry based proteomics with data-driven protein network analysis to systematically characterize how HGSOC cells respond to PARP1i treatment. RESULTS: We found that PARP1i leads to pronounced proteomic changes in a diverse set of cellular processes in HGSOC cancer cells, consistent with transcript changes in an independent perturbation dataset. We interpret decreases in the levels of the pro-proliferative transcription factors SP1 and ß-catenin and in growth factor signaling as reflecting the anti-proliferative effect of PARP1i; and the strong activation of pro-survival processes NF-κB signaling and lipid metabolism as PARPi-induced adaptive resistance mechanisms. Based on these observations, we nominate several protein targets for therapeutic inhibition in combination with PARP1i. When tested experimentally, the combination of PARPi with an inhibitor of fatty acid synthase (TVB-2640) has a 3-fold synergistic effect and is therefore of particular pre-clinical interest. CONCLUSION: Our study improves the current understanding of PARP1 function, highlights the potential that the anti-tumor efficacy of PARP1i may not only rely on DNA damage repair mechanisms and informs on the rational design of PARP1i combination therapies in ovarian cancer.


Asunto(s)
Espectrometría de Masas/métodos , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Proteómica/métodos , Femenino , Humanos , Neoplasias Ováricas/diagnóstico por imagen , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
16.
Dev Cell ; 56(4): 461-477.e7, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33621493

RESUMEN

Homology-directed repair (HDR) safeguards DNA integrity under various forms of stress, but how HDR protects replicating genomes under extensive metabolic alterations remains unclear. Here, we report that besides stalling replication forks, inhibition of ribonucleotide reductase (RNR) triggers metabolic imbalance manifested by the accumulation of increased reactive oxygen species (ROS) in cell nuclei. This leads to a redox-sensitive activation of the ATM kinase followed by phosphorylation of the MRE11 nuclease, which in HDR-deficient settings degrades stalled replication forks. Intriguingly, nascent DNA degradation by the ROS-ATM-MRE11 cascade is also triggered by hypoxia, which elevates signaling-competent ROS and attenuates functional HDR without arresting replication forks. Under these conditions, MRE11 degrades daughter-strand DNA gaps, which accumulate behind active replisomes and attract error-prone DNA polymerases to escalate mutation rates. Thus, HDR safeguards replicating genomes against metabolic assaults by restraining mutagenic repair at aberrantly processed nascent DNA. These findings have implications for cancer evolution and tumor therapy.


Asunto(s)
Replicación del ADN , Genoma Humano , Metabolismo , Reparación del ADN por Recombinación , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA2/deficiencia , Proteína BRCA2/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , ADN/metabolismo , Humanos , Proteína Homóloga de MRE11/metabolismo , Modelos Biológicos , Mutación/genética , Neoplasias/genética , Neoplasias/patología , Polimerizacion , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
17.
Nat Commun ; 11(1): 5587, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154365

RESUMEN

Human skin provides both physical integrity and immunological protection from the external environment using functionally distinct layers, cell types and extracellular matrix. Despite its central role in human health and disease, the constituent proteins of skin have not been systematically characterized. Here, we combine advanced tissue dissection methods, flow cytometry and state-of-the-art proteomics to describe a spatially-resolved quantitative proteomic atlas of human skin. We quantify 10,701 proteins as a function of their spatial location and cellular origin. The resulting protein atlas and our initial data analyses demonstrate the value of proteomics for understanding cell-type diversity within the skin. We describe the quantitative distribution of structural proteins, known and previously undescribed proteins specific to cellular subsets and those with specialized immunological functions such as cytokines and chemokines. We anticipate that this proteomic atlas of human skin will become an essential community resource for basic and translational research ( https://skin.science/ ).


Asunto(s)
Proteoma/metabolismo , Piel/citología , Piel/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Proteómica , Piel/anatomía & histología , Piel/inmunología
18.
EMBO Rep ; 21(10): e50662, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32776417

RESUMEN

Dominant missense mutations in the human serine protease FAM111A underlie perinatally lethal gracile bone dysplasia and Kenny-Caffey syndrome, yet how FAM111A mutations lead to disease is not known. We show that FAM111A proteolytic activity suppresses DNA replication and transcription by displacing key effectors of these processes from chromatin, triggering rapid programmed cell death by Caspase-dependent apoptosis to potently undermine cell viability. Patient-associated point mutations in FAM111A exacerbate these phenotypes by hyperactivating its intrinsic protease activity. Moreover, FAM111A forms a complex with the uncharacterized homologous serine protease FAM111B, point mutations in which cause a hereditary fibrosing poikiloderma syndrome, and we demonstrate that disease-associated FAM111B mutants display amplified proteolytic activity and phenocopy the cellular impact of deregulated FAM111A catalytic activity. Thus, patient-associated FAM111A and FAM111B mutations may drive multisystem disorders via a common gain-of-function mechanism that relieves inhibitory constraints on their protease activities to powerfully undermine cellular fitness.


Asunto(s)
Enfermedades del Desarrollo Óseo , Hiperostosis Cortical Congénita , Proteínas de Ciclo Celular/genética , Mutación con Ganancia de Función , Humanos , Mutación , Péptido Hidrolasas , Receptores Virales
19.
J Pathol ; 251(1): 100-112, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32154592

RESUMEN

Formalin fixation and paraffin-embedding (FFPE) is the most common method to preserve human tissue for clinical diagnosis, and FFPE archives represent an invaluable resource for biomedical research. Proteins in FFPE material are stable over decades but their efficient extraction and streamlined analysis by mass spectrometry (MS)-based proteomics has so far proven challenging. Herein we describe a MS-based proteomic workflow for quantitative profiling of large FFPE tissue cohorts directly from histopathology glass slides. We demonstrate broad applicability of the workflow to clinical pathology specimens and variable sample amounts, including low-input cancer tissue isolated by laser microdissection. Using state-of-the-art data dependent acquisition (DDA) and data independent acquisition (DIA) MS workflows, we consistently quantify a large part of the proteome in 100 min single-run analyses. In an adenoma cohort comprising more than 100 samples, total workup took less than a day. We observed a moderate trend towards lower protein identification in long-term stored samples (>15 years), but clustering into distinct proteomic subtypes was independent of archival time. Our results underscore the great promise of FFPE tissues for patient phenotyping using unbiased proteomics and they prove the feasibility of analyzing large tissue cohorts in a robust, timely, and streamlined manner. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias/patología , Proteoma/metabolismo , Proteómica , Cromatografía Liquida/métodos , Estudios de Cohortes , Humanos , Adhesión en Parafina/métodos , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Fijación del Tejido/métodos
20.
Cell Rep ; 29(12): 4086-4098.e6, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31851935

RESUMEN

The tumor microenvironment (TME) plays a pivotal role in cancer progression, and, in ovarian cancer (OvCa), the primary TME is the omentum. Here, we show that the diabetes drug metformin alters mesothelial cells in the omental microenvironment. Metformin interrupts bidirectional signaling between tumor and mesothelial cells by blocking OvCa cell TGF-ß signaling and mesothelial cell production of CCL2 and IL-8. Inhibition of tumor-stromal crosstalk by metformin is caused by the reduced expression of the tricarboxylic acid (TCA) enzyme succinyl CoA ligase (SUCLG2). Through repressing this TCA enzyme and its metabolite, succinate, metformin activated prolyl hydroxylases (PHDs), resulting in the degradation of hypoxia-inducible factor 1α (HIF1α) in mesothelial cells. Disruption of HIF1α-driven IL-8 signaling in mesothelial cells by metformin results in reduced OvCa invasion in an organotypic 3D model. These findings indicate that tumor-promoting signaling between mesothelial and OvCa cells in the TME can be targeted using metformin.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Metformina/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Células del Estroma/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Femenino , Humanos , Hipoglucemiantes/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones Endogámicos C57BL , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Prolil Hidroxilasas/genética , Prolil Hidroxilasas/metabolismo , Células del Estroma/patología , Succinato-CoA Ligasas/genética , Succinato-CoA Ligasas/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA