Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850157

RESUMEN

During early development, gene expression is tightly regulated. However, how genome organization controls gene expression during the transition from naïve embryonic stem cells to epiblast stem cells is still poorly understood. Using single-molecule microscopy approaches to reach nanoscale resolution, we show that genome remodeling affects gene transcription during pluripotency transition. Specifically, after exit from the naïve pluripotency state, chromatin becomes less compacted, and the OCT4 transcription factor has lower mobility and is more bound to its cognate sites. In epiblast cells, the active transcription hallmark, H3K9ac, decreases within the Oct4 locus, correlating with reduced accessibility of OCT4 and, in turn, with reduced expression of Oct4 nascent RNAs. Despite the high variability in the distances between active pluripotency genes, distances between Nodal and Oct4 decrease during epiblast specification. In particular, highly expressed Oct4 alleles are closer to nuclear speckles during all stages of the pluripotency transition, while only a distinct group of highly expressed Nodal alleles are in close proximity to Oct4 when associated with a nuclear speckle in epiblast cells. Overall, our results provide new insights into the role of the spatiotemporal genome remodeling during mouse pluripotency transition and its correlation with the expression of key pluripotency genes.

2.
Cell Rep ; 43(5): 114170, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38700983

RESUMEN

During cell fate transitions, cells remodel their transcriptome, chromatin, and epigenome; however, it has been difficult to determine the temporal dynamics and cause-effect relationship between these changes at the single-cell level. Here, we employ the heterokaryon-mediated reprogramming system as a single-cell model to dissect key temporal events during early stages of pluripotency conversion using super-resolution imaging. We reveal that, following heterokaryon formation, the somatic nucleus undergoes global chromatin decompaction and removal of repressive histone modifications H3K9me3 and H3K27me3 without acquisition of active modifications H3K4me3 and H3K9ac. The pluripotency gene OCT4 (POU5F1) shows nascent and mature RNA transcription within the first 24 h after cell fusion without requiring an initial open chromatin configuration at its locus. NANOG, conversely, has significant nascent RNA transcription only at 48 h after cell fusion but, strikingly, exhibits genomic reopening early on. These findings suggest that the temporal relationship between chromatin compaction and gene activation during cellular reprogramming is gene context dependent.


Asunto(s)
Reprogramación Celular , Ensamble y Desensamble de Cromatina , Histonas , Humanos , Reprogramación Celular/genética , Histonas/metabolismo , Análisis de la Célula Individual , Activación Transcripcional , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Cromatina/metabolismo , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología
3.
Stem Cell Reports ; 19(5): 689-709, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38701778

RESUMEN

Embryo size, specification, and homeostasis are regulated by a complex gene regulatory and signaling network. Here we used gene expression signatures of Wnt-activated mouse embryonic stem cell (mESC) clones to reverse engineer an mESC regulatory network. We identify NKX1-2 as a novel master regulator of preimplantation embryo development. We find that Nkx1-2 inhibition reduces nascent RNA synthesis, downregulates genes controlling ribosome biogenesis, RNA translation, and transport, and induces severe alteration of nucleolus structure, resulting in the exclusion of RNA polymerase I from nucleoli. In turn, NKX1-2 loss of function leads to chromosome missegregation in the 2- to 4-cell embryo stages, severe decrease in blastomere numbers, alterations of tight junctions (TJs), and impairment of microlumen coarsening. Overall, these changes impair the blastocoel expansion-collapse cycle and embryo cavitation, leading to altered lineage specification and developmental arrest.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Animales , Ratones , Desarrollo Embrionario/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Blastocisto/metabolismo , Blastocisto/citología , Vía de Señalización Wnt , Proteínas Wnt/metabolismo , Uniones Estrechas/metabolismo , Nucléolo Celular/metabolismo
4.
Nat Commun ; 15(1): 4338, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773126

RESUMEN

In interphase nuclei, chromatin forms dense domains of characteristic sizes, but the influence of transcription and histone modifications on domain size is not understood. We present a theoretical model exploring this relationship, considering chromatin-chromatin interactions, histone modifications, and chromatin extrusion. We predict that the size of heterochromatic domains is governed by a balance among the diffusive flux of methylated histones sustaining them and the acetylation reactions in the domains and the process of loop extrusion via supercoiling by RNAPII at their periphery, which contributes to size reduction. Super-resolution and nano-imaging of five distinct cell lines confirm the predictions indicating that the absence of transcription leads to larger heterochromatin domains. Furthermore, the model accurately reproduces the findings regarding how transcription-mediated supercoiling loss can mitigate the impacts of excessive cohesin loading. Our findings shed light on the role of transcription in genome organization, offering insights into chromatin dynamics and potential therapeutic targets.


Asunto(s)
Cromatina , Epigénesis Genética , Heterocromatina , Histonas , Transcripción Genética , Humanos , Histonas/metabolismo , Heterocromatina/metabolismo , Heterocromatina/genética , Cromatina/metabolismo , Cromatina/genética , ARN Polimerasa II/metabolismo , Cohesinas , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Código de Histonas , Línea Celular , Núcleo Celular/metabolismo , Núcleo Celular/genética , Acetilación , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Interfase
5.
Methods Mol Biol ; 2655: 171-181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37212996

RESUMEN

Advanced microscopy techniques (such as STORM, STED, and SIM) have recently allowed the visualization of biological samples beyond the diffraction limit of light. Thanks to this breakthrough, the organization of molecules can be revealed within single cells as never before.Here, we describe the application of STochastic Optical Reconstruction Microscopy (STORM) for the study of polycomb group of proteins (PcG) in the context of chromatin organization. We present a clustering algorithm to quantitatively analyze the spatial distribution of nuclear molecules (e.g., EZH2 or its associated chromatin mark H3K27me3) imaged by 2D STORM. This distance-based analysis uses x-y coordinates of STORM localizations to group them into "clusters." Clusters are classified as singles if isolated or into islands if they form a group of closely associated clusters. For each cluster, the algorithm calculates the number of localizations, the area, and the distance to the closest cluster.This approach can be used for every type of adherent cell line and allows the imaging of every protein for which an antibody is available. It represents a comprehensive strategy to visualize and quantify how PcG proteins and related histone marks organize in the nucleus at nanometric resolution.


Asunto(s)
Cromatina , Microscopía , Cromatina/metabolismo , Proteínas del Grupo Polycomb , Núcleo Celular/metabolismo , Cromosomas
6.
Front Mol Biosci ; 10: 1155825, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051322

RESUMEN

One of the biggest paradoxes in biology is that human genome is roughly 2 m long, while the nucleus containing it is almost one million times smaller. To fit into the nucleus, DNA twists, bends and folds into several hierarchical levels of compaction. Still, DNA has to maintain a high degree of accessibility to be readily replicated and transcribed by proteins. How compaction and accessibility co-exist functionally in human cells is still a matter of debate. Here, we discuss how the torsional stress of the DNA helix acts as a buffer, regulating both chromatin compaction and accessibility. We will focus on chromatin supercoiling and on the emerging role of topoisomerases as pivotal regulators of genome organization. We will mainly highlight the major breakthrough studies led by women, with the intention of celebrating the work of this group that remains a minority within the scientific community.

7.
Elife ; 122023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37010886

RESUMEN

Most studies of cohesin function consider the Stromalin Antigen (STAG/SA) proteins as core complex members given their ubiquitous interaction with the cohesin ring. Here, we provide functional data to support the notion that the SA subunit is not a mere passenger in this structure, but instead plays a key role in the localization of cohesin to diverse biological processes and promotes loading of the complex at these sites. We show that in cells acutely depleted for RAD21, SA proteins remain bound to chromatin, cluster in 3D and interact with CTCF, as well as with a wide range of RNA binding proteins involved in multiple RNA processing mechanisms. Accordingly, SA proteins interact with RNA, and R-loops, even in the absence of cohesin. Our results place SA1 on chromatin upstream of the cohesin ring and reveal a role for SA1 in cohesin loading which is independent of NIPBL, the canonical cohesin loader. We propose that SA1 takes advantage of structural R-loop platforms to link cohesin loading and chromatin structure with diverse functions. Since SA proteins are pan-cancer targets, and R-loops play an increasingly prevalent role in cancer biology, our results have important implications for the mechanistic understanding of SA proteins in cancer and disease.


Asunto(s)
Estructuras R-Loop , ARN , ARN/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina , Factor de Unión a CCCTC/metabolismo , Cohesinas
8.
Cell Rep ; 42(4): 112361, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37059093

RESUMEN

Over the last decades, technological breakthroughs in super-resolution microscopy have allowed us to reach molecular resolution and design experiments of unprecedented complexity. Investigating how chromatin is folded in 3D, from the nucleosome level up to the entire genome, is becoming possible by "magic" (imaging genomic), i.e., the combination of imaging and genomic approaches. This offers endless opportunities to delve into the relationship between genome structure and function. Here, we review recently achieved objectives and the conceptual and technical challenges the field of genome architecture is currently undertaking. We discuss what we have learned so far and where we are heading. We elucidate how the different super-resolution microscopy approaches and, more specifically, live-cell imaging have contributed to the understanding of genome folding. Moreover, we discuss how future technical developments could address remaining open questions.


Asunto(s)
Cromatina , Nucleosomas , Cromatina/genética , Nucleosomas/genética , Genoma , Genómica
9.
Nat Commun ; 14(1): 1210, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869101

RESUMEN

Early during preimplantation development and in heterogeneous mouse embryonic stem cells (mESC) culture, pluripotent cells are specified towards either the primed epiblast or the primitive endoderm (PE) lineage. Canonical Wnt signaling is crucial for safeguarding naive pluripotency and embryo implantation, yet the role and relevance of canonical Wnt inhibition during early mammalian development remains unknown. Here, we demonstrate that transcriptional repression exerted by Wnt/TCF7L1 promotes PE differentiation of mESCs and in preimplantation inner cell mass. Time-series RNA sequencing and promoter occupancy data reveal that TCF7L1 binds and represses genes encoding essential naive pluripotency factors and indispensable regulators of the formative pluripotency program, including Otx2 and Lef1. Consequently, TCF7L1 promotes pluripotency exit and suppresses epiblast lineage formation, thereby driving cells into PE specification. Conversely, TCF7L1 is required for PE specification as deletion of Tcf7l1 abrogates PE differentiation without restraining epiblast priming. Taken together, our study underscores the importance of transcriptional Wnt inhibition in regulating lineage specification in ESCs and preimplantation embryo development as well as identifies TCF7L1 as key regulator of this process.


Asunto(s)
Conducción de Automóvil , Endodermo , Proteína 1 Similar al Factor de Transcripción 7 , Animales , Femenino , Ratones , Embarazo , Blastocisto , Diferenciación Celular , Estratos Germinativos
10.
Proc Natl Acad Sci U S A ; 120(4): e2213810120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669113

RESUMEN

Reactivation of the inactive X chromosome is a hallmark epigenetic event during reprogramming of mouse female somatic cells to induced pluripotent stem cells (iPSCs). This involves global structural remodeling from a condensed, heterochromatic into an open, euchromatic state, thereby changing a transcriptionally inactive into an active chromosome. Despite recent advances, very little is currently known about the molecular players mediating this process and how this relates to iPSC-reprogramming in general. To gain more insight, here we perform a RNAi-based knockdown screen during iPSC-reprogramming of mouse fibroblasts. We discover factors important for X chromosome reactivation (XCR) and iPSC-reprogramming. Among those, we identify the cohesin complex member SMC1a as a key molecule with a specific function in XCR, as its knockdown greatly affects XCR without interfering with iPSC-reprogramming. Using super-resolution microscopy, we find SMC1a to be preferentially enriched on the active compared with the inactive X chromosome and that SMC1a is critical for the decompacted state of the active X. Specifically, depletion of SMC1a leads to contraction of the active X both in differentiated and in pluripotent cells, where it normally is in its most open state. In summary, we reveal cohesin as a key factor for remodeling of the X chromosome from an inactive to an active structure and that this is a critical step for XCR during iPSC-reprogramming.


Asunto(s)
Células Madre Pluripotentes Inducidas , Femenino , Animales , Ratones , Reprogramación Celular , Inactivación del Cromosoma X/genética , Cromosoma X/genética , Estructuras Cromosómicas , Cohesinas
11.
Nat Struct Mol Biol ; 29(10): 1011-1023, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36220894

RESUMEN

The linear sequence of DNA provides invaluable information about genes and their regulatory elements along chromosomes. However, to fully understand gene function and regulation, we need to dissect how genes physically fold in the three-dimensional nuclear space. Here we describe immuno-OligoSTORM, an imaging strategy that reveals the distribution of nucleosomes within specific genes in super-resolution, through the simultaneous visualization of DNA and histones. We combine immuno-OligoSTORM with restraint-based and coarse-grained modeling approaches to integrate super-resolution imaging data with Hi-C contact frequencies and deconvoluted micrococcal nuclease-sequencing information. The resulting method, called Modeling immuno-OligoSTORM, allows quantitative modeling of genes with nucleosome resolution and provides information about chromatin accessibility for regulatory factors, such as RNA polymerase II. With Modeling immuno-OligoSTORM, we explore intercellular variability, transcriptional-dependent gene conformation, and folding of housekeeping and pluripotency-related genes in human pluripotent and differentiated cells, thereby obtaining the highest degree of data integration achieved so far to our knowledge.


Asunto(s)
Nucleasa Microcócica , Nucleosomas , Cromatina/genética , ADN/genética , Histonas/genética , Humanos , Nucleasa Microcócica/metabolismo , Nucleosomas/genética , ARN Polimerasa II/genética
12.
EBioMedicine ; 77: 103914, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35278743

RESUMEN

BACKGROUND: Visual impairments are a critical medical hurdle to be addressed in modern society. Müller glia (MG) have regenerative potential in the retina in lower vertebrates, but not in mammals. However, in mice, in vivo cell fusion between MG and adult stem cells forms hybrids that can partially regenerate ablated neurons. METHODS: We used organotypic cultures of human retina and preparations of dissociated cells to test the hypothesis that cell fusion between human MG and adult stem cells can induce neuronal regeneration in human systems. Moreover, we established a microinjection system for transplanting human retinal organoids to demonstrate hybrid differentiation. FINDINGS: We first found that cell fusion occurs between MG and adult stem cells, in organotypic cultures of human retina as well as in cell cultures. Next, we showed that the resulting hybrids can differentiate and acquire a proto-neural electrophysiology profile when the Wnt/beta-catenin pathway is activated in the adult stem cells prior fusion. Finally, we demonstrated the engraftment and differentiation of these hybrids into human retinal organoids. INTERPRETATION: We show fusion between human MG and adult stem cells, and demonstrate that the resulting hybrid cells can differentiate towards neural fate in human model systems. Our results suggest that cell fusion-mediated therapy is a potential regenerative approach for treating human retinal dystrophies. FUNDING: This work was supported by La Caixa Health (HR17-00231), Velux Stiftung (976a) and the Ministerio de Ciencia e Innovación, (BFU2017-86760-P) (AEI/FEDER, UE), AGAUR (2017 SGR 689, 2017 SGR 926).


Asunto(s)
Células Madre Adultas , Células Ependimogliales , Animales , Diferenciación Celular , Células Ependimogliales/metabolismo , Humanos , Mamíferos , Ratones , Neuroglía , Retina/metabolismo
13.
Nucleic Acids Res ; 50(1): 175-190, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34929735

RESUMEN

Transcription and genome architecture are interdependent, but it is still unclear how nucleosomes in the chromatin fiber interact with nascent RNA, and which is the relative nuclear distribution of these RNAs and elongating RNA polymerase II (RNAP II). Using super-resolution (SR) microscopy, we visualized the nascent transcriptome, in both nucleoplasm and nucleolus, with nanoscale resolution. We found that nascent RNAs organize in structures we termed RNA nanodomains, whose characteristics are independent of the number of transcripts produced over time. Dual-color SR imaging of nascent RNAs, together with elongating RNAP II and H2B, shows the physical relation between nucleosome clutches, RNAP II, and RNA nanodomains. The distance between nucleosome clutches and RNA nanodomains is larger than the distance measured between elongating RNAP II and RNA nanodomains. Elongating RNAP II stands between nascent RNAs and the small, transcriptionally active, nucleosome clutches. Moreover, RNA factories are small and largely formed by few RNAP II. Finally, we describe a novel approach to quantify the transcriptional activity at an individual gene locus. By measuring local nascent RNA accumulation upon transcriptional activation at single alleles, we confirm the measurements made at the global nuclear level.


Asunto(s)
Nucleosomas/metabolismo , ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Humanos , Nucleosomas/ultraestructura , Transcriptoma
14.
STAR Protoc ; 2(4): 100865, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34632419

RESUMEN

Here, we describe three complementary microscopy-based approaches to quantify morphological changes of chromatin organization in cultured adherent cells: the analysis of the coefficient of variation of DNA, the measurement of DNA-free nuclear areas, and the quantification of chromatin-associated proteins at the nuclear edge. These approaches rely on confocal imaging and stochastic optical reconstruction microscopy and allow a fast and robust quantification of chromatin compaction. These approaches circumvent inter-variability between imaging conditions and apply to every type of adherent cells. For complete details on the use and execution of this protocol, please refer to Neguembor et al. (2021).


Asunto(s)
Cromatina/química , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal/métodos , Técnicas de Cultivo de Célula , Núcleo Celular/química , Células Cultivadas , Células HeLa , Humanos
15.
Mol Cell ; 81(15): 3065-3081.e12, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34297911

RESUMEN

The chromatin fiber folds into loops, but the mechanisms controlling loop extrusion are still poorly understood. Using super-resolution microscopy, we visualize that loops in intact nuclei are formed by a scaffold of cohesin complexes from which the DNA protrudes. RNA polymerase II decorates the top of the loops and is physically segregated from cohesin. Augmented looping upon increased loading of cohesin on chromosomes causes disruption of Lamin at the nuclear rim and chromatin blending, a homogeneous distribution of chromatin within the nucleus. Altering supercoiling via either transcription or topoisomerase inhibition counteracts chromatin blending, increases chromatin condensation, disrupts loop formation, and leads to altered cohesin distribution and mobility on chromatin. Overall, negative supercoiling generated by transcription is an important regulator of loop formation in vivo.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Transcripción Genética/fisiología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Línea Celular , Núcleo Celular/genética , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Laminas/genética , Laminas/metabolismo , ARN Polimerasa II/metabolismo , Imagen Individual de Molécula/métodos , Cohesinas
16.
Cell Rep ; 34(2): 108614, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33440158

RESUMEN

Nucleosomes form heterogeneous groups in vivo, named clutches. Clutches are smaller and less dense in mouse embryonic stem cells (ESCs) compared to neural progenitor cells (NPCs). Using coarse-grained modeling of the pluripotency Pou5f1 gene, we show that the genome-wide clutch differences between ESCs and NPCs can be reproduced at a single gene locus. Larger clutch formation in NPCs is associated with changes in the compaction and internucleosome contact probability of the Pou5f1 fiber. Using single-molecule tracking (SMT), we further show that the core histone protein H2B is dynamic, and its local mobility relates to the structural features of the chromatin fiber. H2B is less stable and explores larger areas in ESCs compared to NPCs. The amount of linker histone H1 critically affects local H2B dynamics. Our results have important implications for how nucleosome organization and H2B dynamics contribute to regulate gene activity and cell identity.


Asunto(s)
Cromatina/metabolismo , Nucleosomas/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular , Humanos , Ratones , Modelos Moleculares
17.
Mol Ther ; 29(2): 804-821, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33264643

RESUMEN

Cell therapy approaches hold great potential for treating retinopathies, which are currently incurable. This study addresses the problem of inadequate migration and integration of transplanted cells into the host retina. To this end, we have identified the chemokines that were most upregulated during retinal degeneration and that could chemoattract mesenchymal stem cells (MSCs). The results were observed using a pharmacological model of ganglion/amacrine cell degeneration and a genetic model of retinitis pigmentosa, from both mice and human retinae. Remarkably, MSCs overexpressing Ccr5 and Cxcr6, which are receptors bound by a subset of the identified chemokines, displayed improved migration after transplantation in the degenerating retina. They also led to enhanced rescue of cell death and to preservation of electrophysiological function. Overall, we show that chemokines released from the degenerating retinae can drive migration of transplanted stem cells, and that overexpression of chemokine receptors can improve cell therapy-based regenerative approaches.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Receptores CCR5/genética , Receptores CXCR6/genética , Degeneración Retiniana/etiología , Degeneración Retiniana/metabolismo , Animales , Biomarcadores , Movimiento Celular , Susceptibilidad a Enfermedades , Expresión Génica , Humanos , Ratones , Receptores CCR5/metabolismo , Receptores CXCR6/metabolismo , Degeneración Retiniana/patología
18.
J Mol Biol ; 433(6): 166701, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33181171

RESUMEN

Nucleosomes cluster together when chromatin folds in the cell to form heterogeneous groups termed "clutches". These structural units add another level of chromatin regulation, for example during cell differentiation. Yet, the mechanisms that regulate their size and compaction remain obscure. Here, using our chromatin mesoscale model, we dissect clutch patterns in fibers with different combinations of nucleosome positions, linker histone density, and acetylation levels to investigate their role in clutch regulation. First, we isolate the effect of each chromatin parameter by studying systems with regular nucleosome spacing; second, we design systems with naturally-occurring linker lengths that fold onto specific clutch patterns; third, we model gene-encoding fibers to understand how these combined factors contribute to gene structure. Our results show how these chromatin parameters act together to produce different-sized nucleosome clutches. The length of nucleosome free regions (NFRs) profoundly affects clutch size, while the length of linker DNA has a moderate effect. In general, higher linker histone densities produce larger clutches by a chromatin compaction mechanism, while higher acetylation levels produce smaller clutches by a chromatin unfolding mechanism. We also show that it is possible to design fibers with naturally-occurring DNA linkers and NFRs that fold onto specific clutch patterns. Finally, in gene-encoding systems, a complex combination of variables dictates a gene-specific clutch pattern. Together, these results shed light into the mechanisms that regulate nucleosome clutches and suggest a new epigenetic mechanism by which chromatin parameters regulate transcriptional activity via the three-dimensional folded state of the genome at a nucleosome level.


Asunto(s)
Epigénesis Genética , Genoma , Histonas/química , Proteínas de Homeodominio/química , Nucleosomas/ultraestructura , Factor 3 de Transcripción de Unión a Octámeros/química , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Ensamble y Desensamble de Cromatina , ADN/química , ADN/genética , ADN/metabolismo , Sitios Genéticos , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Nucleosomas/genética , Nucleosomas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Conformación Proteica
19.
Cell Rep ; 33(10): 108474, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33296649

RESUMEN

Bi-species, fusion-mediated, somatic cell reprogramming allows precise, organism-specific tracking of unknown lineage drivers. The fusion of Tcf7l1-/- murine embryonic stem cells with EBV-transformed human B cell lymphocytes, leads to the generation of bi-species heterokaryons. Human mRNA transcript profiling at multiple time points permits the tracking of the reprogramming of B cell nuclei to a multipotent state. Interrogation of a human B cell regulatory network with gene expression signatures identifies 8 candidate master regulator proteins. Of these 8 candidates, ectopic expression of BAZ2B, from the bromodomain family, efficiently reprograms hematopoietic committed progenitors into a multipotent state and significantly enhances their long-term clonogenicity, stemness, and engraftment in immunocompromised mice. Unbiased systems biology approaches let us identify the early driving events of human B cell reprogramming.


Asunto(s)
Reprogramación Celular/genética , Células Madre Hematopoyéticas/metabolismo , Factores Generales de Transcripción/metabolismo , Animales , Linfocitos B/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Reprogramación Celular/fisiología , Trasplante de Células Madre de Sangre del Cordón Umbilical/métodos , Femenino , Sangre Fetal/metabolismo , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Células Madre Multipotentes/metabolismo , Factores de Transcripción/metabolismo , Factores Generales de Transcripción/genética , Factores Generales de Transcripción/fisiología
20.
Stem Cell Reports ; 15(3): 646-661, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32822589

RESUMEN

The Wnt/ß-catenin signaling pathway is a key regulator of embryonic stem cell (ESC) self-renewal and differentiation. Constitutive activation of this pathway has been shown to increase mouse ESC (mESC) self-renewal and pluripotency gene expression. In this study, we generated a novel ß-catenin knockout model in mESCs to delete putatively functional N-terminally truncated isoforms observed in previous knockout models. We showed that aberrant N-terminally truncated isoforms are not functional in mESCs. In the generated knockout line, we observed that canonical Wnt signaling is not active, as ß-catenin ablation does not alter mESC transcriptional profile in serum/LIF culture conditions. In addition, we observed that Wnt signaling activation represses mESC spontaneous differentiation in a ß-catenin-dependent manner. Finally, ß-catenin (ΔC) isoforms can rescue ß-catenin knockout self-renewal defects in mESCs cultured in serum-free medium and, albeit transcriptionally silent, cooperate with TCF1 and LEF1 to inhibit mESC spontaneous differentiation in a GSK3-dependent manner.


Asunto(s)
Diferenciación Celular , Autorrenovación de las Células , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Células Madre Embrionarias de Ratones/citología , Vía de Señalización Wnt , beta Catenina/metabolismo , Alelos , Animales , Biomarcadores/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Diferenciación Celular/genética , Autorrenovación de las Células/genética , Células Cultivadas , Ectodermo/metabolismo , Endodermo/metabolismo , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones/metabolismo , Isoformas de Proteínas/metabolismo , Transcriptoma/genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...