Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
mBio ; 15(5): e0045324, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38546267

RESUMEN

Staphylococcus aureus is a Gram-positive pathogen responsible for the majority of skin and soft tissue infections (SSTIs). S. aureus colonizes the anterior nares of approximately 20%-30% of the population and transiently colonizes the skin, thereby increasing the risk of developing SSTIs and more serious infections. Current laboratory models that mimic the skin surface environment are expensive, require substantial infrastructure, and limit the scope of bacterial physiology studies under human skin conditions. To overcome these limitations, we developed a cost-effective, open-source, chemically defined media recipe termed skin-like medium (SLM) that incorporates key aspects of the human skin surface environment and supports growth of several staphylococcal species. We utilized SLM to investigate the transcriptional response of methicillin-resistant Staphylococcus aureus (MRSA) following growth in SLM compared to a commonly used laboratory media. Through RNA-seq analysis, we observed the upregulation of several virulence factors, including genes encoding functions involved in adhesion, proteolysis, and cytotoxicity. To further explore these findings, we conducted quantitative reverse transcription-PCR (qRT-PCR) experiments to determine the influence of media composition, pH, and temperature on the transcriptional response of key factors involved in adhesion and virulence. We also demonstrated that MRSA primed in SLM adhered better to human corneocytes and demonstrated adhesin-specific phenotypes that previously required genetic manipulation. This improved adherence to corneocytes was dependent on both acidic pH and growth in SLM. These results support the potential utility of SLM as an in vitro model for assessing staphylococcal physiology and metabolism on human skin. IMPORTANCE: Staphylococcus aureus is the major cause of skin diseases, and its increased prevalence in skin colonization and infections present a need to understand its physiology in this environment. The work presented here outlines S. aureus upregulation of colonization and virulence factors using a newly developed medium that strives to replicate the human skin surface environment and demonstrates roles for adhesins clumping factor A (ClfA), serine-rich repeat glycoprotein adhesin (SraP), and the fibronectin binding proteins (Fnbps) in human corneocyte adherence.


Asunto(s)
Medios de Cultivo , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus Resistente a Meticilina , Piel , Factores de Virulencia , Humanos , Piel/microbiología , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/fisiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Medios de Cultivo/química , Staphylococcus aureus/genética , Staphylococcus aureus/fisiología , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/patogenicidad , Infecciones Estafilocócicas/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Adhesión Bacteriana
2.
bioRxiv ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37961268

RESUMEN

Staphylococcus aureus is a Gram-positive pathogen responsible for the majority of skin and soft tissue infections (SSTIs). S. aureus colonizes the anterior nares of approximately 20-30% of the population and transiently colonizes the skin, thereby increasing the risk of developing SSTIs and more serious infections. Current laboratory models that mimic the skin surface environment are expensive, require substantial infrastructure, and limit the scope of bacterial physiology studies under human skin conditions. To overcome these limitations, we developed a cost-effective, open-source, chemically defined media recipe termed skin-like media (SLM) that incorporates key aspects of the human skin surface environment and supports growth of several Staphylococcal species. We utilized SLM to investigate the transcriptional response of methicillin-resistant S. aureus (MRSA) following growth in SLM compared to a commonly used laboratory media. Through RNA-seq analysis, we observed the upregulation of several virulence factors, including genes encoding functions involved in adhesion, proteolysis, and cytotoxicity. To further explore these findings, we conducted qRT-PCR experiments to determine the influence of media composition, pH, and temperature on the transcriptional response of key factors involved in adhesion and virulence. We also demonstrated that MRSA primed in SLM adhered better to human corneocytes and demonstrated adhesin-specific phenotypes that previously required genetic manipulation. These results support the potential utility of SLM as an in vitro model for assessing Staphylococcal physiology and metabolism on human skin. Importance: Staphylococcus aureus is the major cause of skin diseases, and its increased prevalence in skin colonization and infections present a need to understand its physiology in this environment. The work presented here outlines S. aureus upregulation of colonization and virulence factors using a newly developed media that strives to replicate the human skin surface environment, and demonstrates roles for adhesins ClfA, SraP, and Fnbps in human corneocyte adherence.

3.
Microbiol Resour Announc ; 12(7): e0046323, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37318351

RESUMEN

Staphylococcus epidermidis is a ubiquitous skin commensal that has the potential to become pathogenic and cause disease. Here, we report the complete genome sequence of a S. epidermidis strain isolated from adult healthy skin that shows high expression of the virulence factor extracellular cysteine protease A (EcpA).

4.
Mol Microbiol ; 118(3): 191-207, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35785499

RESUMEN

Some prokaryotes compartmentalize select metabolic capabilities. Salmonella enterica subspecies enterica serovar Typhimurium LT2 (hereafter S. Typhimurium) catabolizes ethanolamine (EA) within a proteinaceous compartment that we refer to as the ethanolamine utilization (Eut) metabolosome. EA catabolism is initiated by the adenosylcobalamin (AdoCbl)-dependent ethanolamine ammonia-lyase (EAL), which deaminates EA via an adenosyl radical mechanism to yield acetaldehyde plus ammonia. This adenosyl radical can be quenched, requiring the replacement of AdoCbl by the ATP-dependent EutA reactivase. During growth on ethanolamine, S. Typhimurium synthesizes AdoCbl from cobalamin (Cbl) using the ATP:Co(I)rrinoid adenosyltransferase (ACAT) EutT. It is known that EAL localizes to the metabolosome, however, prior to this work, it was unclear where EutA and EutT localized, and whether they interacted with EAL. Here, we provide evidence that EAL, EutA, and EutT localize to the Eut metabolosome, and that EutA interacts directly with EAL. We did not observe interactions between EutT and EAL nor between EutT and the EutA/EAL complex. However, growth phenotypes of a ΔeutT mutant strain show that EutT is critical for efficient ethanolamine catabolism. This work provides a preliminary understanding of the dynamics of AdoCbl synthesis and its uses within the Eut metabolosome.


Asunto(s)
Etanolamina Amoníaco-Liasa , Salmonella enterica , Adenosina Trifosfato/metabolismo , Cobamidas/metabolismo , Etanolamina/metabolismo , Etanolamina Amoníaco-Liasa/genética , Etanolamina Amoníaco-Liasa/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo , Salmonella typhimurium/metabolismo
5.
Appl Environ Microbiol ; 88(15): e0088322, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35862682

RESUMEN

The regulated uptake and consumption of d-amino acids by bacteria remain largely unexplored, despite the physiological importance of these compounds. Unlike other characterized bacteria, such as Escherichia coli, which utilizes only l-Asp, Acinetobacter baylyi ADP1 can consume both d-Asp and l-Asp as the sole carbon or nitrogen source. As described here, two LysR-type transcriptional regulators (LTTRs), DarR and AalR, control d- and l-Asp metabolism in strain ADP1. Heterologous expression of A. baylyi proteins enabled E. coli to use d-Asp as the carbon source when either of two transporters (AspT or AspY) and a racemase (RacD) were coexpressed. A third transporter, designated AspS, was also discovered to transport Asp in ADP1. DarR and/or AalR controlled the transcription of aspT, aspY, racD, and aspA (which encodes aspartate ammonia lyase). Conserved residues in the N-terminal DNA-binding domains of both regulators likely enable them to recognize the same DNA consensus sequence (ATGC-N7-GCAT) in several operator-promoter regions. In strains lacking AalR, suppressor mutations revealed a role for the ClpAP protease in Asp metabolism. In the absence of the ClpA component of this protease, DarR can compensate for the loss of AalR. ADP1 consumed l- and d-Asn and l-Glu, but not d-Glu, as the sole carbon or nitrogen source using interrelated pathways. IMPORTANCE A regulatory scheme was revealed in which AalR responds to l-Asp and DarR responds to d-Asp, a molecule with critical signaling functions in many organisms. The RacD-mediated interconversion of these isomers causes overlap in transcriptional control in A. baylyi. Our studies improve understanding of transport and regulation and lay the foundation for determining how regulators distinguish l- and d-enantiomers. These studies are relevant for biotechnology applications, and they highlight the importance of d-amino acids as natural bacterial growth substrates.


Asunto(s)
Acinetobacter , Regulación Bacteriana de la Expresión Génica , Acinetobacter/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Ácido D-Aspártico/genética , Ácido D-Aspártico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/genética , Nitrógeno/metabolismo , Péptido Hidrolasas/metabolismo
6.
Methods Enzymol ; 668: 87-108, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35589203

RESUMEN

Adenosylcobamides (AdoCbas) are coenzymes required by organisms from all domains of life to perform challenging chemical reactions. AdoCbas are characterized by a cobalt-containing tetrapyrrole ring, where an adenosyl group is covalently attached to the cobalt ion via a unique Co-C organometallic bond. During catalysis, this bond is homolytically cleaved by AdoCba-dependent enzymes to form an adenosyl radical that is critical for intra-molecular rearrangements. The formation of the Co-C bond is catalyzed by a family of enzymes known as ATP:Co(I)rrinoid adenosyltransferases (ACATs). ACATs adenosylate Cbas in two steps: (I) they generate a planar, Co(II) four-coordinate Cba to facilitate the reduction of Co(II) to Co(I), and (II) they transfer the adenosyl group from ATP to the Co(I) ion. To synthesize adenosylated corrinoids in vitro, it is imperative that anoxic conditions are maintained to avoid oxidation of Co(II) or Co(I) ions. Here we describe a method for the enzymatic synthesis and quantification of specific AdoCbas.


Asunto(s)
Transferasas Alquil y Aril , Corrinoides , Adenosina Trifosfato , Proteínas Bacterianas/química , Cobalto/química , Cobamidas/química , Corrinoides/química , Vitamina B 12/química
7.
PLoS Pathog ; 18(5): e1010512, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35617212

RESUMEN

Skin health is influenced by the composition and integrity of the skin barrier. The healthy skin surface is an acidic, hypertonic, proteinaceous, and lipid-rich environment that microorganisms must adapt to for survival, and disruption of this environment can result in dysbiosis and increase risk for infectious diseases. This work provides a brief overview of skin barrier function and skin surface composition from the perspective of how the most common skin pathogen, Staphylococcus aureus, combats acid stress. Advancements in replicating this environment in the laboratory setting for the study of S. aureus pathogenesis on the skin, as well as future directions in this field, are also discussed.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Disbiosis/patología , Humanos , Concentración de Iones de Hidrógeno , Piel/patología , Infecciones Estafilocócicas/patología
8.
Biochemistry ; 59(10): 1124-1136, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32125848

RESUMEN

ATP:Co(I)rrinoid adenosyltransferases (ACATs) catalyze the transfer of the adenosyl moiety from co-substrate ATP to a corrinoid substrate. ACATs are grouped into three families, namely, CobA, PduO, and EutT. The EutT family of enzymes is further divided into two classes, depending on whether they require a divalent metal ion for activity (class I and class II). To date, a structure has not been elucidated for either class of the EutT family of ACATs. In this work, results of bioinformatics analyses revealed several conserved residues between the C-terminus of EutT homologues and the structurally characterized Lactobacillus reuteri PduO (LrPduO) homologue. In LrPduO, these residues are associated with ATP binding and formation of an intersubunit salt bridge. These residues were substituted, and in vivo and in vitro data support the conclusion that the equivalent residues in the metal-free (i.e., class II) Listeria monocytogenes EutT (LmEutT) enzyme affect ATP binding. Results of in vivo and in vitro analyses of LmEutT variants with substitutions at phenylalanine and tryptophan residues revealed that replacement of the phenylalanine residue at position 72 affected access to the substrate-binding site and replacement of a tryptophan residue at position 238 affected binding of the Cbl substrate to the active site. Unlike the PduO family of ACATs, a single phenylalanine residue is not responsible for displacement of the α-ligand. Together, these data suggest that while EutT enzymes share a conserved ATP-binding motif and an intersubunit salt bridge with PduO family ACATs, class II EutT family ACATs utilize an unidentified mechanism for Cbl lower-ligand displacement and reduction that is different from that of PduO and CobA family ACATs.


Asunto(s)
Corrinoides/metabolismo , Listeria monocytogenes/enzimología , Aciltransferasas/metabolismo , Adenosina Trifosfato/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/ultraestructura , Transferasas Alquil y Aril/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Catálisis , Dominio Catalítico , Cobalto/química , Cobamidas/metabolismo , Cinética , Limosilactobacillus reuteri/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Modelos Moleculares , Mutación , Transferasas/metabolismo
9.
Biochemistry ; 57(34): 5076-5087, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30071718

RESUMEN

ATP:Co(I)rrinoid adenosyltransferases (ACATs) are involved in de novo adenosylcobamide (AdoCba) biosynthesis and in salvaging complete and incomplete corrinoids from the environment. The ACAT enzyme family is comprised of three classes of structurally and evolutionarily distinct proteins (i.e., CobA, PduO, and EutT). The structure of EutT is unknown, and an understanding of its mechanism is incomplete. The Salmonella enterica EutT ( SeEutT) enzyme is the best-characterized member of its class and is known to be a ferroprotein. Here, we report the identification and initial biochemical characterization of an enzyme representative of a new class of EutTs that does not require a metal ion for activity. In vivo and in vitro evidence shows that the metal-free EutT homologue from Listeria monocytogenes ( LmEutT) has ACAT activity and that, unlike other ACATs, the biologically active form of LmEutT is a tetramer. In vitro studies revealed that LmEutT was more efficient than SeEutT and displayed positive cooperativity. LmEutT adenosylated cobalamin, but not cobinamide, showed specificity for ATP and 2'-deoxyATP and released a triphosphate byproduct. Bioinformatics analyses suggest that metal-free EutT ACATs are also present in other Firmicutes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Transferasas Alquil y Aril/metabolismo , Proteínas Bacterianas/metabolismo , Cobamidas/metabolismo , Firmicutes/enzimología , Listeria monocytogenes/enzimología , Metales/metabolismo , Transferasas Alquil y Aril/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Biología Computacional , Cinética , Modelos Moleculares , Filogenia , Conformación Proteica , Homología de Secuencia
10.
Biochemistry ; 57(34): 5088-5095, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30071158

RESUMEN

The EutT enzyme from Listeria monocytogenes ( LmEutT) is a member of the family of ATP:cobalt(I) corrinoid adenosyltransferase (ACAT) enzymes that catalyze the biosynthesis of adenosylcobalamin (AdoCbl) from exogenous Co(II)rrinoids and ATP. Apart from EutT-type ACATs, two evolutionary unrelated types of ACATs have been identified, termed PduO and CobA. Although the three types of ACATs are nonhomologous, they all generate a four-coordinate cob(II)alamin (4C Co(II)Cbl) species to facilitate the formation of a supernucleophilic Co(I)Cbl intermediate capable of attacking the 5'-carbon of cosubstrate ATP. Previous spectroscopic studies of the EutT ACAT from Salmonella enterica ( SeEutT) revealed that this enzyme requires a divalent metal cofactor for the conversion of 5C Co(II)Cbl to a 4C species. Interestingly, LmEutT does not require a divalent metal cofactor for catalytic activity, which exemplifies an interesting phylogenetic divergence among the EutT enzymes. To explore if this disparity in the metal cofactor requirement among EutT enzymes correlates with differences in substrate specificity or the mechanism of Co(II)Cbl reduction, we employed various spectroscopic techniques to probe the interaction of Co(II)Cbl and cob(II)inamide (Co(II)Cbi+) with LmEutT in the absence and presence of cosubstrate ATP. Our data indicate that LmEutT displays a similar substrate specificity as SeEutT and can bind both Co(II)Cbl and Co(II)Cbi+ when complexed with MgATP, though it exclusively converts Co(II)Cbl to a 4C species. Notably, LmEutT is the most effective ACAT studied to date in generating the catalytically relevant 4C Co(II)Cbl species, achieving a >98% 5C → 4C conversion yield on the addition of just over one mol equiv of cosubstrate MgATP.


Asunto(s)
Adenosina Trifosfato/metabolismo , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Listeria monocytogenes/enzimología , Vitamina B 12/análogos & derivados , Cinética , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato , Vitamina B 12/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA