Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(6)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38931907

RESUMEN

To address the challenges posed by biofilm presence and achieve a substantial reduction in bacterial load within root canals during endodontic treatment, various irrigants, including nanoparticle suspensions, have been recommended. Berberine (BBR), a natural alkaloid derived from various plants, has demonstrated potential applications in dentistry treatments due to its prominent antimicrobial, anti-inflammatory, and antioxidant properties. This study aimed to produce and characterize a novel polymeric nanoparticle of poly (lactic-co-glycolic acid) (PLGA) loaded with berberine and evaluate its antimicrobial activity against relevant endodontic pathogens, Enterococcus faecalis, and Candida albicans. Additionally, its cytocompatibility using gingival fibroblasts was assessed. The polymeric nanoparticle was prepared by the nanoprecipitation method. Physicochemical characterization revealed spheric nanoparticles around 140 nm with ca, -6 mV of surface charge, which was unaffected by the presence of BBR. The alkaloid was successfully incorporated at an encapsulation efficiency of 77% and the designed nanoparticles were stable upon 20 weeks of storage at 4 °C and 25 °C. Free BBR reduced planktonic growth at ≥125 µg/mL. Upon incorporation into PLGA nanoparticles, 20 µg/mL of [BBR]-loaded nanoparticles lead to a significant reduction, after 1 h of contact, of both planktonic bacteria and yeast. Sessile cells within biofilms were also considered. At 30 and 40 µg/mL, [BBR]-loaded PLGA nanoparticles reduced the viability of the sessile endodontic bacteria, upon 24 h of exposure. The cytotoxicity of BBR-loaded nanoparticles to oral fibroblasts was negligible. The novel berberine-loaded polymeric nanoparticles hold potential as a promising supplementary approach in the treatment of endodontic infections.

2.
Dalton Trans ; 52(33): 11679-11690, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37552495

RESUMEN

Ruthenium-based complexes have been suggested as promising anticancer drugs exhibiting reduced general toxicity compared to platinum-based drugs. In particular, Ru(η6-arene)(PTA)Cl2 (PTA = 1,3,5-triaza-7-phosphaadamantane), or RAPTA, complexes have demonstrated efficacy against breast cancer by suppressing metastasis, tumorigenicity, and inhibiting the replication of the human tumor suppressor gene BRCA1. However, RAPTA compounds have limited cytotoxicity, and therefore comparatively high doses are required. This study explores the activity of a series of RAPTA-like ruthenium(II) arene compounds against MCF-7 and MDA-MB-231 breast cancer cell lines and [Ru(η6-toluene)(PPh3)2Cl]+ was identified as a promising candidate. Notably, [Ru(η6-toluene)(PPh3)2Cl]Cl was found to be remarkably stable and highly cytotoxic, and selective to breast cancer cells. The minor groove of DNA was identified as a relevant target.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Complejos de Coordinación , Compuestos Organometálicos , Rutenio , Humanos , Femenino , Compuestos Organometálicos/farmacología , Compuestos Organometálicos/metabolismo , Rutenio/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Tolueno , Línea Celular Tumoral , Complejos de Coordinación/farmacología
3.
Chem Phys Lipids ; 249: 105254, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36279929

RESUMEN

The application of nanoparticles as permeation enhancers in skin drug delivery is a growing research field. However, the mechanisms of nanoparticles' interaction with the skin structure are still unknown. Fucoidan/chitosan nanoparticles have demonstrated several physicochemical and biological advantages, among which is the enhancement of skin permeation. This study aims to elucidate permeation enhancement mechanisms using synchrotron-based Fourier Transform Infrared Microspectroscopy (SR-FTIRM) combined with multivariate analysis and in vitro skin permeation assay. Given the molecular weight influence on chitosan's properties, the nanoparticles-skin interactions were evaluated with nanoparticles produced using low- and medium-molecular-weight chitosan. Chemical maps and spectral analysis revealed that fucoidan/chitosan nanoparticles induced changes in the lipids and protein regions. Inter-sample spectral differences were identified using principal component analysis. Low molecular weight fucoidan/ chitosan nanoparticles caused changes in the skin lipids' lateral packing and structure at the stratum corneum layer towards a less ordered state and higher fluidity, and no evidence was found on proteins structure. The opposite was revealed for medium molecular weight fucoidan/chitosan nanoparticles, which induced changes in the secondary structure of keratin and altered lipid structure to an ordered and dense conformation. In vitro permeation assays with Franz diffusion cells correlate with the observed changes in the skin lipid and protein structure with enhanced skin permeation of a hydrophilic molecule incorporated within the fucoidan/chitosan nanoparticles. The findings of this study unveil molecular changes in the skin structure induced by the nanoparticles only possible with the application of the powerful and precise SR-FTIRM technique. This knowledge allows the design of nanoparticles towards an internalization pathway determining their fate within the skin structure.


Asunto(s)
Quitosano , Nanopartículas , Sincrotrones , Quitosano/química , Piel/química , Nanopartículas/química , Proteínas/metabolismo , Lípidos/química , Administración Cutánea
4.
Pharmaceutics ; 14(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35456586

RESUMEN

In the last years, microneedles (MNs) have been considered a valuable, painless, and minimally invasive approach for controlled transdermal drug delivery (TDD). Rivastigmine (RV), a drug administered to patients suffering from dementia, is currently delivered by oral or transdermal routes; however, both present limitations, mainly gastrointestinal adverse symptoms or local skin irritation and drug losses, respectively, for each route. Given this, the objective of the present work was to develop and evaluate the potential of polymeric MNs for RV transdermal delivery in a controlled manner. Polymeric MNs with two needle heights and different compositions were developed with calcein as a fluorescent model molecule. Morphology and mechanical characterisation were accessed. Skin permeation experiments showed the ability of the devices to deliver calcein and confirmed that the arrays were able to efficiently pierce the skin. To obtain a new TDD anti-dementia therapeutic solution, RV was loaded in 800 µm polymeric MNs of alginate and alginate/k-carrageenan MNs. In the presence of RV, the MN's morphology was maintained; however, the presence of RV influenced the compression force. Skin permeation studies revealed that RV-loaded MNs allowed a more efficient controlled release of the drug than the commercial patch. In vivo, skin irritation tests in rabbits revealed that the developed MNs were innocuous upon removal, in contrast with the evidence found for Exelon®, the commercial patch, which caused slight mechanical damage to the skin. The herein-produced MNs demonstrated a more controlled release of the drug, being the more suitable option for the transdermal delivery of RV.

5.
Antioxidants (Basel) ; 10(9)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34573007

RESUMEN

Flavonoids are one of the vital classes of natural polyphenolic compounds abundantly found in plants. Due to their wide range of therapeutic properties, which include antioxidant, anti-inflammatory, photoprotective, and depigmentation effects, flavonoids have been demonstrated to be promising agents in the treatment of several skin disorders. However, their lipophilic nature and poor water solubility invariably lead to limited oral bioavailability. In addition, they are rapidly degraded and metabolized in the human body, hindering their potential contribution to the prevention and treatment of many disorders. Thus, to overcome these challenges, several cutaneous delivery systems have been extensively studied. Topical drug delivery besides offering an alternative administration route also ensures a sustained release of the active compound at the desired site of action. Incorporation into lipid or polymer-based nanoparticles appears to be a highly effective approach for cutaneous delivery of flavonoids with good encapsulation potential and reduced toxicity. This review focuses on currently available formulations used to administer either topically or systemically different classes of flavonoids in the skin, highlighting their potential application as therapeutic and preventive agents.

6.
ACS Appl Mater Interfaces ; 13(36): 42329-42343, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34464076

RESUMEN

Bacterial biofilms are a major health concern, mainly due to their contribution to increased bacterial resistance to well-known antibiotics. The conventional treatment of biofilms represents a challenge, and frequently, eradication is not achieved with long-lasting administration of antibiotics. In this context, the present work proposes an innovative therapeutic approach that is focused on the encapsulation of N-acetyl-l-cysteine (NAC) into lipid nanoparticles (LNPs) functionalized with d-amino acids to target and disrupt bacterial biofilms. The optimized formulations presented a mean hydrodynamic diameter around 200 nm, a low polydispersity index, and a high loading capacity. These formulations were stable under storage conditions up to 6 months. In vitro biocompatibility studies showed a low cytotoxicity effect in fibroblasts and a low hemolytic activity in human red blood cells. Nevertheless, unloaded LNPs showed a higher hemolytic potential than NAC-loaded LNPs, which suggests a safer profile of the latter. The in vitro antibiofilm efficacy of the developed formulations was tested against Staphylococcus epidermidis (Gram-positive) and Pseudomonas aeruginosa (Gram-negative) mature biofilms. The results showed that the NAC-loaded LNPs were ineffective against S. epidermidis biofilms, while a significant reduction of biofilm biomass and bacterial viability in P. aeruginosa biofilms were observed. In a more complex therapeutic approach, the LNPs were further combined with moxifloxacin, revealing a beneficial effect between the LNPs and the antibiotic against P. aeruginosa biofilms. Both alone and in combination with moxifloxacin, unloaded and NAC-loaded LNPs functionalized with d-amino acids showed a great potential to reduce bacterial viability, with no significant differences in the presence or absence of NAC. However, the presence of NAC in NAC-loaded functionalized LNPs shows a safer profile than the unloaded LNPs, which is beneficial for an in vivo application. Overall, the developed formulations present a potential therapeutic approach against P. aeruginosa biofilms, alone or in combination with antibiotics.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Portadores de Fármacos/farmacología , Liposomas/química , Nanopartículas/química , Pseudomonas aeruginosa/efectos de los fármacos , Acetilcisteína/química , Acetilcisteína/toxicidad , Animales , Antibacterianos/química , Antibacterianos/toxicidad , Línea Celular , Portadores de Fármacos/química , Portadores de Fármacos/toxicidad , Sinergismo Farmacológico , Humanos , Liposomas/toxicidad , Ratones , Pruebas de Sensibilidad Microbiana , Moxifloxacino/farmacología , Nanopartículas/toxicidad , Palmitatos/química , Palmitatos/toxicidad , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/toxicidad , Polietilenglicoles/química , Polietilenglicoles/toxicidad , Pseudomonas aeruginosa/fisiología
7.
Carbohydr Polym ; 266: 118098, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34044917

RESUMEN

Transdermal drug delivery is considered one of the most attractive routes for administration of pharmaceutic and cosmetic active ingredients due to the numerous advantages, especially over oral and intravenous methodologies. However, some limitations still exist mainly regarding the need to improve the drugs permeation across the skin. For this, several strategies have been described, considering the application of chemical permeation enhancers, drugs' nanoformulations and physical methods. Of these, microneedles have been proposed in the last years as promising strategies to enhance transdermal drug delivery. In this review, different types of microneedles are described, and the most commonly used methods of fabrication systematized, as well as the materials typically used and their main therapeutical applications. A special attention is paid to polymeric microneedles, particularly those made from sustainable marine polysaccharides like chitosan, alginate and hyaluronic acid. The applications of marine based polymeric microneedle devices for transdermal drug delivery are examined in detail and the perspectives of translation from the clinical trials to the market demonstrated.


Asunto(s)
Alginatos/química , Quitosano/química , Sistemas de Liberación de Medicamentos/instrumentación , Ácido Hialurónico/química , Agujas , Preparaciones Farmacéuticas/administración & dosificación , Administración Cutánea , Animales , Organismos Acuáticos/química , Secuencia de Carbohidratos , Quimioterapia , Humanos
8.
Int J Pharm ; 591: 119960, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33049358

RESUMEN

A lipid-based permeation assay (PVPASC) with a lipid composition similar to Human stratum corneum layer has been previously reported. The aim of this study was to further characterize the PVPASC model in the presence of co-solvents and to determine its applicability to evaluate drug permeability with drug-loaded nanoparticles. Data obtained from PVPASC model were compared with results from isolated SC from pig ear skin. The characterization revealed that the PVPASC barriers retain integrity and calcein permeability when stored up to 12 weeks at -20 °C, in the presence of different co-solvents, and under a skin environment pH range. The permeation profile of calcein in the lipid-based barrier correlated well with data obtained for the isolated SC model and revealed higher reproducibility. Cyclosporine A (CsA) was selected as a model drug, given its relevance for skin-inflammatory diseases and two types of lipid nanoparticles were used to assess the permeability of the PVPASC model. It was possible to distinguish the permeability between free and nanoparticles' loaded cyclosporine. Data obtained with CsA-loaded nanoformulations indicated a higher permeation rate than the obtained for the solid lipid nanoparticles or the free drug. The PVPASC model could be applied as a cost-effective alternative for skin early drug development.


Asunto(s)
Nanopartículas , Preparaciones Farmacéuticas , Animales , Humanos , Lípidos , Permeabilidad , Preparaciones Farmacéuticas/metabolismo , Reproducibilidad de los Resultados , Piel/metabolismo , Absorción Cutánea , Porcinos
9.
Mater Sci Eng C Mater Biol Appl ; 116: 111255, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32806240

RESUMEN

Methotrexate (MTX), an anti-neoplastic agent used for breast cancer treatment, has restricted clinical applications due to poor water solubility, non-specific targeting and adverse side effects. To overcome these limitations, MTX was co-encapsulated with an active-targeting platform known as superparamagnetic iron oxide nanoparticles (SPIONs) in a lipid-based homing system, nanostructured lipid carrier (NLC). This multi-modal therapeutic regime was successfully formulated with good colloidal stability, bio- and hemo-compatibility. MTX-SPIONs co-loaded NLC was time-dependent cytotoxic towards MDA-MB-231 breast cancer cell line with IC50 values of 137 µg/mL and 12 µg/mL at 48 and 72 h, respectively. The MTX-SPIONs co-loaded NLC was internalized in the MDA-MB-231 cells via caveolae-mediated endocytosis in a time-dependent manner, and the superparamagnetic properties were sufficient to induce, under a magnetic field, a localized temperature increase at cellular level resulting in apoptotic cell death. In conclusion, MTX-SPIONs co-loaded NLC is a potential magnetic guiding multi-modal therapeutic system for the treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Metotrexato , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Hipertermia , Células MCF-7 , Metotrexato/farmacología , Nanomedicina
10.
Br J Pharmacol ; 177(19): 4314-4329, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32608012

RESUMEN

Skin drug delivery is an emerging route in drug development, leading to an urgent need to understand the behaviour of active pharmaceutical ingredients within the skin. Given, As one of the body's first natural defences, the barrier properties of skin provide an obstacle to the successful outcome of any skin drug therapy. To elucidate the mechanisms underlying this barrier, reductionist strategies have designed several models with different levels of complexity, using non-biological and biological components. Besides the detail of information and resemblance to human skin in vivo, offered by each in vitro model, the technical and economic efforts involved must also be considered when selecting the most suitable model. This review provides an outline of the commonly used skin models, including healthy and diseased conditions, in-house developed and commercialized models, their advantages and limitations, and an overview of the new trends in skin-engineered models.


Asunto(s)
Preparaciones Farmacéuticas , Piel , Sistemas de Liberación de Medicamentos , Humanos , Modelos Biológicos
11.
Colloids Surf B Biointerfaces ; 193: 111121, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32464354

RESUMEN

Vitamin A is essential to human health. Encapsulation in lipid nanoparticles was used to overcome vitamin A poor water solubility in beverages. This work aimed to develop and characterize lipid nanoparticles, containing vitamin A, for food fortification, assuring its stability and oral bioaccessibility. Lipid nanoparticles optimized for the oral administration of vitamin A using the hot homogenization method. The nanoparticles subjected to conditions used in food processing suffered no changes in their size or vitamin content. In vitro assays simulating gastrointestinal digestion suggested that the nanoparticles are not altered in the stomach, and the biocompatibility of the formulations showed no toxicity in fibroblasts. With the developed nanoparticles 80% of the added vitamin reached the intestine in the digestibility assay, demonstrating suitability as a nanotechnology application in the food research for the food industry.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas/química , Vitamina A/química , Administración Oral , Animales , Cápsulas/administración & dosificación , Cápsulas/química , Línea Celular , Ratones , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Propiedades de Superficie , Vitamina A/administración & dosificación
12.
Int J Biol Macromol ; 158: 180-188, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32360466

RESUMEN

Considering the potential of mucoadhesive properties of nanoparticles in oral delivery, this work describes the preparation and characterization of fucoidan/chitosan nanoparticles loaded with methotrexate (MTX) intended to lung cancer therapy. The nanoparticles were produced and characterized in terms of size, surface charge, entrapment efficiency, and morphology. The size of the developed nanoparticles was around 300 nm, the zeta potential value was negative (ca. -30 mV), revealing a low tendency to aggregate. The self-assembled fucoidan/chitosan nanoparticles were stable at acidic pH (1.6-5.2), without disintegration under pH 6-7.4, revealing resistance through the gastrointestinal tract, and were found to be mucoadhesive suggesting ability to enhance drug oral bioavailability. Lung cancer cells quickly internalized the developed nanoparticles. Moreover, MTX-loaded fucoidan/chitosan nanoparticles up to 245 µg mL-1 in polymer equivalent to 23.5 µg mL-1 of MTX were safe towards fibroblasts but hampered lung cancer cell proliferation mediated by an apoptotic process. MTX-loaded nanoparticles were 7-fold more effective in inhibiting lung cancer cells proliferation than the free drug, showing the potential of fucoidan-chitosan nanoparticles to improve the cytotoxicity of free methotrexate on A549 lung cancer cells. These results also demonstrate that fucoidan/chitosan nanoparticles may provide a suitable platform for poor-water soluble compounds' oral delivery.

13.
Nanomaterials (Basel) ; 10(5)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455668

RESUMEN

Inflammatory skin diseases, including psoriasis and atopic dermatitis, affect around one quarter to one third of the world population. Systemic cyclosporine A, an immunosuppressant agent, is included in the current therapeutic armamentarium of these diseases. Despite being highly effective, it is associated with several side effects, and its topical administration is limited by its high molecular weight and poor water solubility. To overcome these limitations, cyclosporine A was incorporated into solid lipid nanoparticles obtained from Softisan® 649, a commonly used cosmetic ingredient, aiming to develop a vehicle for application to the skin. The nanoparticles presented sizes of around 200 nm, low polydispersity, negative surface charge, and stability when stored for 8 weeks at room temperature or 4 °C. An effective incorporation of 88% of cyclosporine A within the nanoparticles was observed, without affecting its morphology. After the freeze-drying process, the Softisan® 649-based nanoparticles formed an oleogel. Skin permeation studies using pig ear as a model revealed low permeation of the applied cyclosporine A in the freeze-dried form of the nanoparticles in relation to free drug and the freshly prepared nanoparticles. About 1.0 mg of cyclosporine A was delivered to the skin with reduced transdermal permeation. These results confirm local delivery of cyclosporine A, indicating its promising topical administration.

14.
Mar Drugs ; 17(12)2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31766498

RESUMEN

The use of marine-origin polysaccharides has increased in recent research because they are abundant, cheap, biocompatible, and biodegradable. These features motivate their application in nanotechnology as drug delivery systems; in tissue engineering, cancer therapy, or wound dressing; in biosensors; and even water treatment. Given the physicochemical and bioactive properties of fucoidan and chitosan, a wide range of nanostructures has been developed with these polysaccharides per se and in combination. This review provides an outline of these marine polysaccharides, including their sources, chemical structure, biological properties, and nanomedicine applications; their combination as nanoparticles with descriptions of the most commonly used production methods; and their physicochemical and biological properties applied to the design of nanoparticles to deliver several classes of compounds. A final section gives a brief overview of some biomedical applications of fucoidan and chitosan for tissue engineering and wound healing.


Asunto(s)
Organismos Acuáticos/química , Quitosano/química , Sistemas de Liberación de Medicamentos , Polisacáridos/química , Antibacterianos/administración & dosificación , Antibacterianos/química , Materiales Biocompatibles/química , Composición de Medicamentos/métodos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Nanomedicina/métodos , Nanopartículas/química , Polifenoles/administración & dosificación , Polifenoles/química , Ingeniería de Tejidos/métodos
15.
Nanomaterials (Basel) ; 9(8)2019 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-31405123

RESUMEN

The use of functional excipients such as ionic liquids (ILs) and the encapsulation of drugs into nanocarriers are useful strategies to overcome poor drug solubility. The aim of this work was to evaluate the potential of IL-polymer nanoparticle hybrid systems as tools to deliver poorly soluble drugs. These systems were obtained using a methodology previously developed by our group and improved herein to produce IL-polymer nanoparticle hybrid systems. Two different choline-based ILs and poly (lactic-co-glycolic acid) (PLGA) 50:50 or PLGA 75:25 were used to load rutin into the delivery system. The resulting rutin-loaded IL-polymer nanoparticle hybrid systems presented a diameter of 250-300 nm, with a low polydispersity index and a zeta potential of about -40 mV. The drug association efficiency ranged from 51% to 76%, which represents a good achievement considering the poor solubility of rutin. No significant particle aggregation was obtained upon freeze-drying. The presence of the IL in the nanosystem does not affect its sustained release properties, achieving about 85% of rutin released after 72 h. The cytotoxicity studies showed that the delivery system was not toxic to HaCat cells. Our findings may open a new paradigm on the therapy improvement of diseases treated with poorly soluble drugs.

16.
Int J Pharm ; 569: 118571, 2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31352050

RESUMEN

Transdermal delivery represents a very attractive administration route that provides various advantages over other methods of administration, including enhanced patient compliance via non-invasive, painless and simple application and reduced side effects. Thereby, the research on suitable drugs for this route continues to increase. However, most of drug candidates face the challenges of low drug permeability across the skin's biologically active barrier - the stratum corneum (SC). In this context, a low cost, simple screening tool to evaluate penetration of drug candidates in a human SC barrier model was developed. The in vitro model is based on a modified phospholipid vesicle-based permeation assay (PVPA) with a lipid composition close to human SC layer. The new SC PVPA model can be stored up to 2 weeks at -20 °C, withstand a pH range from 2.0 to 8.0 and the presence of co-solvents (DMSO, oleic acid and cremophor®) without losing their integrity. The human mimicking SC PVPA model was able to detect calcein permeability differences when different drugs, applied in the therapy of skin-related diseases, were present. The obtained data correlated well with the well accepted pig ear model, which highlights the potential of this new human SC model.


Asunto(s)
Epidermis/metabolismo , Fluoresceínas/química , Modelos Biológicos , Fosfolípidos/química , Absorción Cutánea , Animales , Composición de Medicamentos , Estabilidad de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Permeabilidad , Preparaciones Farmacéuticas/química , Porcinos
17.
Molecules ; 24(2)2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30669398

RESUMEN

Polymeric nanoparticles based on fucoidan and chitosan were developed to deliver quercetin as a novel functional food. Through the polyelectrolyte self-assembly method, fucoidan/chitosan (F/C) nanoparticles were obtained with three different weight ratios (1/1, 3/1, and 5/1). The content of quercetin in the fucoidan/chitosan nanoparticles was in the range 110 ± 3 to 335 ± 4 mg·mL-1, with the increase of weight ratio of fucoidan to chitosan in the nanoparticle. Physicochemically stable nanoparticles were obtained with a particle size within the 300⁻400 nm range and surface potential higher than +30 mV for the 1F/1C ratio nanoparticle and around -30 mV for the 3F/1C and 5F/1C ratios nanoparticles. The 1F/1C ratio nanoparticle became larger and more unstable as the pH increased from 2.5 to 7.4, while the 3F/1C and 5F/1C nanoparticles retained their initial characteristics. This result indicates that the latter nanoparticles were stable along the gastrointestinal tract. The quercetin-loaded fucoidan/chitosan nanoparticles showed strong antioxidant activity and controlled release under simulated gastrointestinal environments (in particular for the 3F/1C and 5F/1C ratios), preventing quercetin degradation and increasing its oral bioavailability.


Asunto(s)
Quitosano/química , Portadores de Fármacos/química , Nanopartículas/química , Polisacáridos/química , Quercetina/administración & dosificación , Quercetina/farmacocinética , Antioxidantes/administración & dosificación , Antioxidantes/farmacocinética , Fenómenos Químicos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Nanopartículas/ultraestructura , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier
18.
Int J Biol Macromol ; 124: 1115-1122, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30521895

RESUMEN

In this study, fucoidan/chitosan nanoparticles were developed for the topical delivery of methotrexate towards the treatment of skin-related inflammatory diseases. Based on the fucoidan/chitosan (F/C) weight ratio, three different nanoparticles (1F/1C; 3F/1C; 5F/1C) were produced and characterized. Methotrexate was loaded in these polymeric nanoparticles achieving a drug loading of ca. 14% and an entrapment efficiency of 96, 87 and 80% for 1F/1C; 3F/1C and 5F/1C nanoparticles, respectively. Methotrexate-loaded fucoidan/chitosan nanoparticles exhibited size within the 300-500 nm range, positive zeta potential for 1F/1C nanoparticles (+60 mV) and negative surface charge for the 3F/1C and 5F/1C nanoparticles (-40 and -45 mV, respectively). Methotrexate loaded in 3F/1C and 5F/1C nanoparticles did not affect cells viability and presented lower cytotoxicity than free methotrexate, in fibroblasts and human keratinocytes. MTX-loaded fucoidan/chitosan nanoparticles lead to a significant reduction of pro-inflammatory cytokines produced by activated human monocytes. Skin permeation studies showed that methotrexate-loaded nanoparticles permeated the pig ear skin barrier reaching after 6 h, a 2.7- and 3.3-fold increase for 3F/1C and 5F/1C nanoparticles, relative to free methotrexate. In conclusion, fucoidan/chitosan nanoparticles, in particular the ratio 5F/1C, is safe, exerts an anti-inflammatory effect and increase skin permeation thus can potentially be used for methotrexate topical delivery.


Asunto(s)
Antiinflamatorios , Quitosano , Sistemas de Liberación de Medicamentos , Metotrexato , Nanopartículas , Polisacáridos , Administración Cutánea , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Línea Celular , Quitosano/química , Quitosano/farmacocinética , Quitosano/farmacología , Humanos , Metotrexato/química , Metotrexato/farmacocinética , Metotrexato/farmacología , Ratones , Nanopartículas/química , Nanopartículas/uso terapéutico , Polisacáridos/química , Polisacáridos/farmacocinética , Polisacáridos/farmacología , Absorción Cutánea , Porcinos
19.
Biomed Pharmacother ; 103: 1392-1396, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29864923

RESUMEN

The aim of this work was to assess the feasibility of drug nanosystems combination for oral therapy of multibacillary leprosy. The anti-leprotic drugs dapsone (DAP) and clofazimine (CLZ) were incorporated within polymeric nanosystems and studied per se and in combination. DAP was loaded in Eudragit L100 nanoparticles (NPs-DAP) while CLZ was loaded in (poly(lactic-co-glycolic acid) (NPs-CLZ). The nanosystems exhibited around 200 nm in size and a drug loading of 12% for each drug. In vitro cytotoxicity on intestinal Caco-2 cells revealed that after 8 h incubation, DAP alone and within NPs were not toxic up to 100 µg mL-1, while CLZ per se was toxic, reducing cell viability to 30% at 50 µg mL-1. Caco-2 exposed to the combination of NPs-DAP (100 µg mL-1) and NPs-CLZ (50 µg mL-1) exhibited 80% of viability. Caco-2 monolayer permeability assays revealed that DAP and CLZ in the nanosystems per se or in NPs-DAP/ NPs-CLZ combination crossed the intestinal barrier. No significant differences were observed between the single nanosystems or in combination with the apparent permeability values and the amount of permeated drug. Thus, the NPs-DAP/NPs-CLZ combination seems to be a promising platform to deliver both drugs in association, representing an important step towards the improvement of multibacillary leprosy therapy.


Asunto(s)
Clofazimina/farmacología , Dapsona/farmacología , Sistemas de Liberación de Medicamentos , Intestinos/fisiología , Nanopartículas/química , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Impedancia Eléctrica , Humanos , Intestinos/efectos de los fármacos
20.
Nanomedicine (Lond) ; 13(9): 1037-1049, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29790395

RESUMEN

AIM: The treatment of rheumatoid arthritis remains a challenge as available therapies still entail the risk of deleterious off-target effects. The present study describes hyaluronic acid-conjugated pH-sensitive liposomes as an effective drug delivery-targeting strategy to synovial cells. MATERIALS & METHODS: Therapeutic, cytotoxic and targeting potential of developed liposomes were studied in vitro using macrophages and fibroblasts cell lines. RESULTS & CONCLUSION: Results suggest an enhanced cellular uptake of conjugated liposomes, mainly mediated by caveolae- and clathrin-dependent endocytosis. In vitro release studies demonstrated that prednisolone was preferentially released under acidic conditions mimicking intracellular endosomal compartments. Overall, results revealed that conjugated pH-sensitive liposomes are a promising nanoapproach for the targeted delivery of prednisolone within inflamed synovial cells for rheumatoid arthritis treatment.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Ácido Hialurónico/química , Liposomas/química , Prednisolona/administración & dosificación , Prednisolona/uso terapéutico , Animales , Línea Celular , Endocitosis/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Concentración de Iones de Hidrógeno , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Espectroscopía de Resonancia Magnética , Ratones , Prednisolona/química , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...