Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(44): e2311946120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37871215

RESUMEN

The T-box transcription factor Eomesodermin (Eomes), also known as Tbr2, plays essential roles in the early mouse embryo. Loss-of-function mutant embryos arrest at implantation due to Eomes requirements in the trophectoderm cell lineage. Slightly later, expression in the visceral endoderm promotes anterior visceral endoderm formation and anterior-posterior axis specification. Early induction in the epiblast beginning at day 6 is necessary for nascent mesoderm to undergo epithelial to mesenchymal transition (EMT). Eomes acts in a temporally and spatially restricted manner to sequentially specify the yolk sac haemogenic endothelium, cardiac mesoderm, definitive endoderm, and axial mesoderm progenitors during gastrulation. Little is known about the underlying molecular mechanisms governing Eomes actions during the formation of these distinct progenitor cell populations. Here, we introduced a degron-tag and mCherry reporter sequence into the Eomes locus. Our experiments analyzing homozygously tagged embryonic stem cells and embryos demonstrate that the degron-tagged Eomes protein is fully functional. dTAG (degradation fusion tag) treatment in vitro results in rapid protein degradation and recapitulates the Eomes-null phenotype. However in utero administration of dTAG resulted in variable and lineage-specific degradation, likely reflecting diverse cell type-specific Eomes expression dynamics. Finally, we demonstrate that Eomes protein rapidly recovers following dTAG wash-out in vitro. The ability to temporally manipulate Eomes protein expression in combination with cell marking by the mCherry-reporter offers a powerful tool for dissecting Eomes-dependent functional roles in these diverse cell types in the early embryo.


Asunto(s)
Transición Epitelial-Mesenquimal , Proteínas de Dominio T Box , Ratones , Animales , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Estratos Germinativos/metabolismo , Embrión de Mamíferos/metabolismo , Mesodermo/metabolismo , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica
3.
Nat Cell Biol ; 23(1): 61-74, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33420489

RESUMEN

Extra-embryonic mesoderm (ExM)-composed of the earliest cells that traverse the primitive streak-gives rise to the endothelium as well as haematopoietic progenitors in the developing yolk sac. How a specific subset of ExM becomes committed to a haematopoietic fate remains unclear. Here we demonstrate using an embryonic stem cell model that transient expression of the T-box transcription factor Eomesodermin (Eomes) governs haemogenic competency of ExM. Eomes regulates the accessibility of enhancers that the transcription factor stem cell leukaemia (SCL) normally utilizes to specify primitive erythrocytes and is essential for the normal development of Runx1+ haemogenic endothelium. Single-cell RNA sequencing suggests that Eomes loss of function profoundly blocks the formation of blood progenitors but not specification of Flk-1+ haematoendothelial progenitors. Our findings place Eomes at the top of the transcriptional hierarchy regulating early blood formation and suggest that haemogenic competence is endowed earlier during embryonic development than was previously appreciated.


Asunto(s)
Células Madre Embrionarias/citología , Hemangioblastos/citología , Mesodermo/citología , Proteínas de Dominio T Box/fisiología , Saco Vitelino/citología , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Hemangioblastos/metabolismo , Masculino , Mesodermo/metabolismo , Ratones Noqueados , Embarazo , RNA-Seq , Análisis de la Célula Individual , Proteína 1 de la Leucemia Linfocítica T Aguda/genética , Proteína 1 de la Leucemia Linfocítica T Aguda/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Saco Vitelino/metabolismo
4.
Nat Commun ; 11(1): 2782, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493987

RESUMEN

The transcriptional repressor Blimp1 controls cell fate decisions in the developing embryo and adult tissues. Here we describe Blimp1 expression and functional requirements within maternal uterine tissues during pregnancy. Expression is robustly up-regulated at early post-implantation stages in the primary decidual zone (PDZ) surrounding the embryo. Conditional inactivation results in defective formation of the PDZ barrier and abnormal trophectoderm invasion. RNA-Seq analysis demonstrates down-regulated expression of genes involved in cell adhesion and markers of decidualisation. In contrast, genes controlling immune responses including IFNγ are up-regulated. ChIP-Seq experiments identify candidate targets unique to the decidua as well as those shared across diverse cell types including a highly conserved peak at the Csf-1 gene promoter. Interestingly Blimp1 inactivation results in up-regulated Csf1 expression and macrophage recruitment into maternal decidual tissues. These results identify Blimp1 as a critical regulator of tissue remodelling and maternal tolerance during early stages of pregnancy.


Asunto(s)
Decidua/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Transcripción Genética , Animales , Decidua/ultraestructura , Ectodermo/metabolismo , Ectodermo/ultraestructura , Implantación del Embrión/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Factor Estimulante de Colonias de Macrófagos/genética , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Mutación/genética , Embarazo , Regiones Promotoras Genéticas , Trofoblastos/metabolismo , Trofoblastos/ultraestructura , Regulación hacia Arriba/genética
5.
Elife ; 92020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32423529

RESUMEN

A major challenge in cell and developmental biology is the automated identification and quantitation of cells in complex multilayered tissues. We developed CytoCensus: an easily deployed implementation of supervised machine learning that extends convenient 2D 'point-and-click' user training to 3D detection of cells in challenging datasets with ill-defined cell boundaries. In tests on such datasets, CytoCensus outperforms other freely available image analysis software in accuracy and speed of cell detection. We used CytoCensus to count stem cells and their progeny, and to quantify individual cell divisions from time-lapse movies of explanted Drosophila larval brains, comparing wild-type and mutant phenotypes. We further illustrate the general utility and future potential of CytoCensus by analysing the 3D organisation of multiple cell classes in Zebrafish retinal organoids and cell distributions in mouse embryos. CytoCensus opens the possibility of straightforward and robust automated analysis of developmental phenotypes in complex tissues.


There are around 200 billion cells in the human brain that are generated by a small pool of rapidly dividing stem cells. For the brain to develop correctly, these stem cells must produce an appropriate number of each type of cell in the right place, at the right time. However, it remains unclear how individual stem cells in the brain know when and where to divide. To answer this question, Hailstone et al. studied the larvae of fruit flies, which use similar genes and mechanisms as humans to control brain development. This involved devising a new method for extracting the brains of developing fruit flies and keeping the intact tissue alive for up to 24 hours while continuously imaging individual cells in three dimensions. Manually tracking the division of each cell across multiple frames of a time-lapse is extremely time consuming. To tackle this problem, Hailstone et al. created a tool called CytoCensus, which uses machine learning to automatically identify stem cells from three-dimensional images and track their rate of division over time. Using the CytoCensus tool, Hailstone et al. identified a gene that controls the diverse rates at whichstem cells divide in the brain. Earlier this year some of the same researchers also published a study showing that this gene regulates a well-known cancer-related protein using an unconventional mechanism. CytoCensus was also able to detect cells in other developing tissues, including the embryos of mice. In the future, this tool could aid research into diseases that affect complex tissues, such as neurodegenerative disorders and cancer.


Asunto(s)
División Celular , Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , Microscopía por Video , Imagen de Lapso de Tiempo , Animales , Animales Modificados Genéticamente , Automatización , Encéfalo/embriología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión de Mamíferos/citología , Femenino , Larva/citología , Masculino , Ratones , Mutación , Organoides/citología , Fenotipo , Reproducibilidad de los Resultados , Retina/citología , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Pez Cebra
6.
Nat Commun ; 10(1): 1089, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842446

RESUMEN

The essential roles played by Nodal and Bmp signalling during early mouse development have been extensively documented. Here we use conditional deletion strategies to investigate functional contributions made by Nodal, Bmp and Smad downstream effectors during primordial germ cell (PGC) development. We demonstrate that Nodal and its target gene Eomes provide early instructions during formation of the PGC lineage. We discover that Smad2 inactivation in the visceral endoderm results in increased numbers of PGCs due to an expansion of the PGC niche. Smad1 is required for specification, whereas in contrast Smad4 controls the maintenance and migration of PGCs. Additionally we find that beside Blimp1, down-regulated phospho-Smad159 levels also distinguishes PGCs from their somatic neighbours so that emerging PGCs become refractory to Bmp signalling that otherwise promotes mesodermal development in the posterior epiblast. Thus balanced Nodal/Bmp signalling cues regulate germ cell versus somatic cell fate decisions in the early posterior epiblast.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Células Germinativas/fisiología , Proteína Nodal/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Línea Celular , Movimiento Celular/fisiología , Embrión de Mamíferos , Endodermo/citología , Endodermo/fisiología , Femenino , Técnicas de Inactivación de Genes , Masculino , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones , Proteína Nodal/genética , Transducción de Señal/genética , Proteínas Smad/genética , Proteínas Smad/metabolismo
7.
Cell Rep ; 24(8): 1977-1985.e7, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30134160

RESUMEN

Epiblast cells in the early post-implantation stage mammalian embryo undergo a transition described as lineage priming before cell fate allocation, but signaling pathways acting upstream remain ill defined. Genetic studies demonstrate that Smad2/3 double-mutant mouse embryos die shortly after implantation. To learn more about the molecular disturbances underlying this abrupt failure, here we characterized Smad2/3-deficient embryonic stem cells (ESCs). We found that Smad2/3 double-knockout ESCs induced to form epiblast-like cells (EpiLCs) display changes in naive and primed pluripotency marker gene expression, associated with the disruption of Oct4-bound distal regulatory elements. In the absence of Smad2/3, we observed enhanced Bmp target gene expression and de-repression of extra-embryonic gene expression. Cell fate allocation into all three embryonic germ layers is disrupted. Collectively, these experiments demonstrate that combinatorial Smad2/3 functional activities are required to maintain distinct embryonic and/or extra-embryonic cell identity during lineage priming in the epiblast before gastrulation.


Asunto(s)
Células Madre Embrionarias/metabolismo , Proteína Nodal/metabolismo , Animales , Diferenciación Celular , Humanos , Ratones , Transducción de Señal , Proteína Smad2
8.
Development ; 144(7): 1249-1260, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28174238

RESUMEN

The T-box transcription factor (TF) Eomes is a key regulator of cell fate decisions during early mouse development. The cis-acting regulatory elements that direct expression in the anterior visceral endoderm (AVE), primitive streak (PS) and definitive endoderm (DE) have yet to be defined. Here, we identified three gene-proximal enhancer-like sequences (PSE_a, PSE_b and VPE) that faithfully activate tissue-specific expression in transgenic embryos. However, targeted deletion experiments demonstrate that PSE_a and PSE_b are dispensable, and only VPE is required for optimal Eomes expression in vivo Embryos lacking this enhancer display variably penetrant defects in anterior-posterior axis orientation and DE formation. Chromosome conformation capture experiments reveal VPE-promoter interactions in embryonic stem cells (ESCs), prior to gene activation. The locus resides in a large (500 kb) pre-formed compartment in ESCs and activation during DE differentiation occurs in the absence of 3D structural changes. ATAC-seq analysis reveals that VPE, PSE_a and four additional putative enhancers display increased chromatin accessibility in DE that is associated with Smad2/3 binding coincident with transcriptional activation. By contrast, activation of the Eomes target genes Foxa2 and Lhx1 is associated with higher order chromatin reorganisation. Thus, diverse regulatory mechanisms govern activation of lineage specifying TFs during early development.


Asunto(s)
Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas de Dominio T Box/genética , Animales , Diferenciación Celular/genética , Cromatina/metabolismo , Endodermo/metabolismo , Elementos de Facilitación Genéticos , Femenino , Factores de Transcripción Forkhead/metabolismo , Gastrulación/genética , Eliminación de Gen , Marcación de Gen , Genes Reporteros , Genotipo , Ratones Endogámicos C57BL , Modelos Biológicos , Proteínas del Grupo Polycomb/metabolismo , Transducción de Señal/genética , Proteína Smad2/metabolismo , Proteínas de Dominio T Box/metabolismo
9.
Genes Dev ; 29(20): 2108-22, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26494787

RESUMEN

Gene regulatory networks controlling functional activities of spatially and temporally distinct endodermal cell populations in the early mouse embryo remain ill defined. The T-box transcription factor Eomes, acting downstream from Nodal/Smad signals, directly activates the LIM domain homeobox transcription factor Lhx1 in the visceral endoderm. Here we demonstrate Smad4/Eomes-dependent Lhx1 expression in the epiblast marks the entire definitive endoderm lineage, the anterior mesendoderm, and midline progenitors. Conditional inactivation of Lhx1 disrupts anterior definitive endoderm development and impedes node and midline morphogenesis in part due to severe disturbances in visceral endoderm displacement. Transcriptional profiling and ChIP-seq (chromatin immunoprecipitation [ChIP] followed by high-throughput sequencing) experiments identified Lhx1 target genes, including numerous anterior definitive endoderm markers and components of the Wnt signaling pathway. Interestingly, Lhx1-binding sites were enriched at enhancers, including the Nodal-proximal epiblast enhancer element and enhancer regions controlling Otx2 and Foxa2 expression. Moreover, in proteomic experiments, we characterized a complex comprised of Lhx1, Otx2, and Foxa2 as well as the chromatin-looping protein Ldb1. These partnerships cooperatively regulate development of the anterior mesendoderm, node, and midline cell populations responsible for establishment of the left-right body axis and head formation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/embriología , Proteínas de Unión al ADN/genética , Embrión de Mamíferos , Elementos de Facilitación Genéticos/fisiología , Eliminación de Gen , Perfilación de la Expresión Génica , Estratos Germinativos/metabolismo , Factor Nuclear 3-beta del Hepatocito/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Factores de Transcripción Otx/metabolismo , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vía de Señalización Wnt
10.
Development ; 142(15): 2586-97, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26116663

RESUMEN

Chromatin remodelling proteins are essential for different aspects of metazoan biology, yet functional details of why these proteins are important are lacking. Although it is possible to describe the biochemistry of how they remodel chromatin, their chromatin-binding profiles in cell lines, and gene expression changes upon loss of a given protein, in very few cases can this easily translate into an understanding of how the function of that protein actually influences a developmental process. Here, we investigate how the chromatin remodelling protein CHD4 facilitates the first lineage decision in mammalian embryogenesis. Embryos lacking CHD4 can form a morphologically normal early blastocyst, but are unable to successfully complete the first lineage decision and form functional trophectoderm (TE). In the absence of a functional TE, Chd4 mutant blastocysts do not implant and are hence not viable. By measuring transcript levels in single cells from early embryos, we show that CHD4 influences the frequency at which unspecified cells in preimplantation stage embryos express lineage markers prior to the execution of this first lineage decision. In the absence of CHD4, this frequency is increased in 16-cell embryos, and by the blastocyst stage cells fail to properly adopt a TE gene expression programme. We propose that CHD4 allows cells to undertake lineage commitment in vivo by modulating the frequency with which lineage-specification genes are expressed. This provides novel insight into both how lineage decisions are made in mammalian cells, and how a chromatin remodelling protein functions to facilitate lineage commitment.


Asunto(s)
Blastocisto/fisiología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , ADN Helicasas/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Animales , Ensamble y Desensamble de Cromatina/genética , Cruzamientos Genéticos , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Etiquetado Corte-Fin in Situ , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa Multiplex , Análisis de la Célula Individual
11.
Mol Cell Biol ; 33(19): 3936-50, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23918801

RESUMEN

Prdm4 is a highly conserved member of the Prdm family of PR/SET domain zinc finger proteins. Many well-studied Prdm family members play critical roles in development and display striking loss-of-function phenotypes. Prdm4 functional contributions have yet to be characterized. Here, we describe its widespread expression in the early embryo and adult tissues. We demonstrate that DNA binding is exclusively mediated by the Prdm4 zinc finger domain, and we characterize its tripartite consensus sequence via SELEX (systematic evolution of ligands by exponential enrichment) and ChIP-seq (chromatin immunoprecipitation-sequencing) experiments. In embryonic stem cells (ESCs), Prdm4 regulates key pluripotency and differentiation pathways. Two independent strategies, namely, targeted deletion of the zinc finger domain and generation of a EUCOMM LacZ reporter allele, resulted in functional null alleles. However, homozygous mutant embryos develop normally and adults are healthy and fertile. Collectively, these results strongly suggest that Prdm4 functions redundantly with other transcriptional partners to cooperatively regulate gene expression in the embryo and adult animal.


Asunto(s)
Proteínas de Unión al ADN/genética , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/genética , Animales , Secuencia de Bases , Sitios de Unión/genética , Northern Blotting , Western Blotting , Células Cultivadas , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Femenino , Perfilación de la Expresión Génica , Hibridación in Situ , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Proteína Nodal/genética , Proteína Nodal/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Técnica SELEX de Producción de Aptámeros , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo , Dedos de Zinc/genética
12.
Genes Dev ; 27(9): 997-1002, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23651855

RESUMEN

Reciprocal inductive interactions between the embryonic and extraembryonic tissues establish the anterior-posterior (AP) axis of the early mouse embryo. The anterior visceral endoderm (AVE) signaling center emerges at the distal tip of the embryo at embryonic day 5.5 and translocates to the prospective anterior side of the embryo. The process of AVE induction and migration are poorly understood. Here we demonstrate that the T-box gene Eomesodermin (Eomes) plays an essential role in AVE recruitment, in part by directly activating the homeobox transcription factor Lhx1. Thus, Eomes function in the visceral endoderm (VE) initiates an instructive transcriptional program controlling AP identity.


Asunto(s)
Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Dominio T Box/metabolismo , Animales , Tipificación del Cuerpo/genética , Línea Celular , Embrión de Mamíferos , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Ratones , Mutación , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Cell Stem Cell ; 10(5): 583-94, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22560079

RESUMEN

Transcriptional heterogeneity within embryonic stem cell (ESC) populations has been suggested as a mechanism by which a seemingly homogeneous cell population can initiate differentiation into an array of different cell types. Chromatin remodeling proteins have been shown to control transcriptional variability in yeast and to be important for mammalian ESC lineage commitment. Here we show that the Nucleosome Remodeling and Deacetylation (NuRD) complex, which is required for ESC lineage commitment, modulates both transcriptional heterogeneity and the dynamic range of a set of pluripotency genes in ESCs. In self-renewing conditions, the influence of NuRD at these genes is balanced by the opposing action of self-renewal factors. Upon loss of self-renewal factors, the action of NuRD is sufficient to silence transcription of these pluripotency genes, allowing cells to exit self-renewal. We propose that modulation of transcription levels by NuRD is key to maintaining the differentiation responsiveness of pluripotent cells.


Asunto(s)
Células Madre Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Células Madre Pluripotentes/fisiología , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Heterogeneidad Genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Ratones , Ratones Noqueados , Factores de Transcripción/genética
14.
Nat Cell Biol ; 13(9): 1084-91, 2011 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-21822279

RESUMEN

Instructive programmes guiding cell-fate decisions in the developing mouse embryo are controlled by a few so-termed master regulators. Genetic studies demonstrate that the T-box transcription factor Eomesodermin (Eomes) is essential for epithelial-to-mesenchymal transition, mesoderm migration and specification of definitive endoderm during gastrulation. Here we report that Eomes expression within the primitive streak marks the earliest cardiac mesoderm and promotes formation of cardiovascular progenitors by directly activating the bHLH (basic-helix-loop-helix) transcription factor gene Mesp1 upstream of the core cardiac transcriptional machinery. In marked contrast to Eomes/Nodal signalling interactions that cooperatively regulate anterior-posterior axis patterning and allocation of the definitive endoderm cell lineage, formation of cardiac progenitors requires only low levels of Nodal activity accomplished through a Foxh1/Smad4-independent mechanism. Collectively, our experiments demonstrate that Eomes governs discrete context-dependent transcriptional programmes that sequentially specify cardiac and definitive endoderm progenitors during gastrulation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Gastrulación , Mesodermo/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Western Blotting , Línea Celular Tumoral , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Masculino , Mesodermo/embriología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Datos de Secuencia Molecular , Miocardio/metabolismo , Proteína Nodal/genética , Proteína Nodal/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico , Proteínas de Dominio T Box/genética , Activación Transcripcional
15.
Development ; 138(7): 1297-308, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21350012

RESUMEN

The epicardium, the outermost tissue layer that envelops the developing heart and provides essential trophic signals for the myocardium, derives from the pro-epicardial organ (PEO). Two of the three members of the Flrt family of transmembrane glycoproteins, Flrt2 and Flrt3, are strongly co-expressed in the PEO. However, beginning at around day 10 of mouse development, following attachment and outgrowth, Flrt3 is selectively downregulated, and only Flrt2 is exclusively expressed in the fully delaminated epicardium. The present gene-targeting experiments demonstrate that mouse embryos lacking Flrt2 expression arrest at mid-gestation owing to cardiac insufficiency. The defects in integrity of the epicardial sheet and disturbed organization of the underlying basement membrane closely resemble those described in Flrt3-deficient embryos that fail to maintain cell-cell contacts in the anterior visceral endoderm (AVE) signalling centre that normally establishes the A-P axis. Using in vitro and in vivo reconstitution assays, we demonstrate that Flrt2 and Flrt3 are functionally interchangeable. When acting alone, either of these proteins is sufficient to rescue functional activities in the AVE and the developing epicardium.


Asunto(s)
Corazón/embriología , Glicoproteínas de Membrana/metabolismo , Organogénesis/genética , Pericardio/metabolismo , Animales , Western Blotting , Línea Celular , Movimiento Celular/genética , Regulación del Desarrollo de la Expresión Génica , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética
16.
BMC Dev Biol ; 9: 54, 2009 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-19849841

RESUMEN

BACKGROUND: Smad4 mutant embryos arrest shortly after implantation and display a characteristic shortened proximodistal axis, a significantly reduced epiblast, as well as a thickened visceral endoderm layer. Conditional rescue experiments demonstrate that bypassing the primary requirement for Smad4 in the extra-embryonic endoderm allows the epiblast to gastrulate. Smad4-independent TGF-beta signals are thus sufficient to promote mesoderm formation and patterning. To further analyse essential Smad4 activities contributed by the extra-embryonic tissues, and characterise Smad4 dependent pathways in the early embryo, here we performed transcriptional profiling of Smad4 null embryonic stem (ES) cells and day 4 embryoid bodies (EBs). RESULTS: Transcripts from wild-type versus Smad4 null ES cells and day 4 EBs were analysed using Illumina arrays. In addition to several known TGF-beta/BMP target genes, we identified numerous Smad4-dependent transcripts that are mis-expressed in the mutants. As expected, mesodermal cell markers were dramatically down-regulated. We also observed an increase in non-canonical potency markers (Pramel7, Tbx3, Zscan4), germ cell markers (Aire, Tuba3a, Dnmt3l) as well as early endoderm markers (Dpp4, H19, Dcn). Additionally, expression of the extracellular matrix (ECM) remodelling enzymes Mmp14 and Mmp9 was decreased in Smad4 mutant ES and EB populations. These changes, in combination with increased levels of laminin alpha1, cause excessive basement membrane deposition. Similarly, in the context of the Smad4 null E6.5 embryos we observed an expanded basement membrane (BM) associated with the thickened endoderm layer. CONCLUSION: Smad4 functional loss results in a dramatic shift in gene expression patterns and in the endodermal cell lineage causes an excess deposition of, or an inability to breakdown and remodel, the underlying BM layer. These structural abnormalities probably disrupt reciprocal signalling between the epiblast and overlying visceral endoderm required for gastrulation.


Asunto(s)
Membrana Basal/embriología , Membrana Basal/metabolismo , Endodermo/citología , Endodermo/metabolismo , Proteína Smad4/fisiología , Animales , Western Blotting , Línea Celular , Movimiento Celular/genética , Movimiento Celular/fisiología , Embrión de Mamíferos , Células Madre Embrionarias/citología , Endodermo/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Inmunohistoquímica , Hibridación in Situ , Ratones , Reacción en Cadena de la Polimerasa , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteína Smad4/genética
17.
Int J Biochem Cell Biol ; 41(1): 108-16, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18775506

RESUMEN

Gene inactivation studies of mammalian histone and DNA-modifying proteins have demonstrated a role for many such proteins in embryonic development. Post-implantation embryonic lethality implies a role for epigenetic factors in differentiation and in development of specific lineages or tissues. However a handful of chromatin-modifying enzymes have been found to be required in pre- or peri-implantation embryos. This is significant as implantation is the time when inner cell mass cells of the blastocyst exit pluripotency and begin to commit to form the various lineages that will eventually form the adult animal. These observations indicate a critical role for chromatin-modifying proteins in the earliest lineage decisions of mammalian development, and/or in the formation of the first embryonic cell types. Recent work has shown that the two major class I histone deacetylase-containing co-repressor complexes, the NuRD and Sin3 complexes, are both required at peri-implantation stages of mouse development, demonstrating the importance of histone deacetylation in cell fate decisions. Over the past 10 years both genetic and biochemical studies have revealed surprisingly divergent roles for these two co-repressors in mammalian cells. In this review we will summarise the evidence that the two major class I histone deacetylase complexes in mammalian cells, the NuRD and Sin3 complexes, play important roles in distinct aspects of embryonic development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Desarrollo Embrionario/genética , Histona Desacetilasas/genética , Humanos , Mamíferos/embriología , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Ratones , Modelos Biológicos , Complejo Correpresor Histona Desacetilasa y Sin3 , Células Madre/citología , Células Madre/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA