Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Cell Res ; : 119843, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39271061

RESUMEN

Acyl-CoA binding domain-containing proteins (ACBDs) perform diverse but often uncharacterised functions linked to cellular lipid metabolism. Human ACBD4 and ACBD5 are closely related peroxisomal membrane proteins, involved in tethering of peroxisomes to the ER and capturing fatty acids for peroxisomal ß-oxidation. ACBD5 deficiency causes neurological abnormalities including ataxia and white matter disease. Peroxisome-ER contacts depend on an ACBD4/5-FFAT motif, which interacts with ER-resident VAP proteins. As ACBD4/5-like proteins are present in most fungi and all animals, we combined phylogenetic analyses with experimental approaches to improve understanding of their evolution and functions. Notably, all vertebrates exhibit gene sequences for both ACBD4 and ACBD5, while invertebrates and fungi possess only a single ACBD4/5-like protein. Our analyses revealed alterations in domain structure and FFAT sequences, which help understanding functional diversification of ACBD4/5-like proteins. We show that the Drosophila melanogaster ACBD4/5-like protein possesses a functional FFAT motif to tether peroxisomes to the ER via Dm_Vap33. Depletion of Dm_Acbd4/5 caused peroxisome redistribution in wing neurons and reduced life expectancy. In contrast, the ACBD4/5-like protein of the filamentous fungus Ustilago maydis lacks a FFAT motif and does not interact with Um_Vap33. Loss of Um_Acbd4/5 resulted in an accumulation of peroxisomes and early endosomes at the hyphal tip. Moreover, lipid droplet numbers increased, and mitochondrial membrane potential declined, implying altered lipid homeostasis. Our findings reveal differences between tethering and metabolic functions of ACBD4/5-like proteins across evolution, improving our understanding of ACBD4/5 function in health and disease. The need for a unifying nomenclature for ACBD proteins is discussed.

2.
J Biol Chem ; 299(8): 105013, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37414147

RESUMEN

Peroxisomes and the endoplasmic reticulum (ER) are intimately linked subcellular organelles, physically connected at membrane contact sites. While collaborating in lipid metabolism, for example, of very long-chain fatty acids (VLCFAs) and plasmalogens, the ER also plays a role in peroxisome biogenesis. Recent work identified tethering complexes on the ER and peroxisome membranes that connect the organelles. These include membrane contacts formed via interactions between the ER protein VAPB (vesicle-associated membrane protein-associated protein B) and the peroxisomal proteins ACBD4 and ACBD5 (acyl-coenzyme A-binding domain protein). Loss of ACBD5 has been shown to cause a significant reduction in peroxisome-ER contacts and accumulation of VLCFAs. However, the role of ACBD4 and the relative contribution these two proteins make to contact site formation and recruitment of VLCFAs to peroxisomes remain unclear. Here, we address these questions using a combination of molecular cell biology, biochemical, and lipidomics analyses following loss of ACBD4 or ACBD5 in HEK293 cells. We show that the tethering function of ACBD5 is not absolutely required for efficient peroxisomal ß-oxidation of VLCFAs. We demonstrate that loss of ACBD4 does not reduce peroxisome-ER connections or result in the accumulation of VLCFAs. Instead, the loss of ACBD4 resulted in an increase in the rate of ß-oxidation of VLCFAs. Finally, we observe an interaction between ACBD5 and ACBD4, independent of VAPB binding. Overall, our findings suggest that ACBD5 may act as a primary tether and VLCFA recruitment factor, whereas ACBD4 may have regulatory functions in peroxisomal lipid metabolism at the peroxisome-ER interface.


Asunto(s)
Proteínas de la Membrana , Peroxisomas , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Metabolismo de los Lípidos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Peroxisomas/metabolismo
3.
Bioessays ; 44(11): e2200151, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36180400

RESUMEN

In recent years, membrane contact sites (MCS), which mediate interactions between virtually all subcellular organelles, have been extensively characterized and shown to be essential for intracellular communication. In this review essay, we focus on an emerging topic: the regulation of MCS. Focusing on the tether proteins themselves, we discuss some of the known mechanisms which can control organelle tethering events and identify apparent common regulatory hubs, such as the VAP interface at the endoplasmic reticulum (ER). We also highlight several currently hypothetical concepts, including the idea of tether oligomerization and redox regulation playing a role in MCS formation. We identify gaps in our current understanding, such as the identity of the majority of kinases/phosphatases involved in tether modification and conclude that a holistic approach-incorporating the formation of multiple MCS, regulated by interconnected regulatory modulators-may be required to fully appreciate the true complexity of these fascinating intracellular communication systems.


Asunto(s)
Retículo Endoplásmico , Membranas Mitocondriales , Retículo Endoplásmico/metabolismo , Proteínas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo
4.
J Cell Sci ; 135(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35678336

RESUMEN

Peroxisome membrane dynamics and division are essential to adapt the peroxisomal compartment to cellular needs. The peroxisomal membrane protein PEX11ß (also known as PEX11B) and the tail-anchored adaptor proteins FIS1 (mitochondrial fission protein 1) and MFF (mitochondrial fission factor), which recruit the fission GTPase DRP1 (dynamin-related protein 1, also known as DNML1) to both peroxisomes and mitochondria, are key factors of peroxisomal division. The current model suggests that MFF is essential for peroxisome division, whereas the role of FIS1 is unclear. Here, we reveal that PEX11ß can promote peroxisome division in the absence of MFF in a DRP1- and FIS1-dependent manner. We also demonstrate that MFF permits peroxisome division independently of PEX11ß and restores peroxisome morphology in PEX11ß-deficient patient cells. Moreover, targeting of PEX11ß to mitochondria induces mitochondrial division, indicating the potential for PEX11ß to modulate mitochondrial dynamics. Our findings suggest the existence of an alternative, MFF-independent pathway in peroxisome division and report a function for FIS1 in the division of peroxisomes. This article has an associated First Person interview with the first authors of the paper.


Asunto(s)
Dinámicas Mitocondriales , Peroxisomas , Dinaminas/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Peroxisomas/metabolismo
5.
Front Cell Dev Biol ; 10: 895856, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756994

RESUMEN

Vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) are ubiquitous ER-resident tail-anchored membrane proteins in eukaryotic cells. Their N-terminal major sperm protein (MSP) domain faces the cytosol and allows them to interact with a wide variety of cellular proteins. Therefore, VAP proteins are vital to many cellular processes, including organelle membrane tethering, lipid transfer, autophagy, ion homeostasis and viral defence. Here, we provide a timely overview of the increasing number of VAPA/B binding partners and discuss the role of VAPA/B in maintaining organelle-ER interactions and cooperation. Furthermore, we address how viruses and intracellular bacteria hijack VAPs and their binding partners to induce interactions between the host ER and pathogen-containing compartments and support pathogen replication. Finally, we focus on the role of VAP in human disease and discuss how mutated VAPB leads to the disruption of cellular homeostasis and causes amyotrophic lateral sclerosis.

6.
Contact (Thousand Oaks) ; 5: 1-4, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35611050

RESUMEN

Peroxisomes and the ER are closely inter-connected organelles, which collaborate in the metabolism of lipids. In a recent research paper in the Journal of Cell Biology, we describe a novel mechanism by which peroxisome-ER membrane contact sites are regulated, via phosphorylation of the peroxisomal protein ACBD5. We found that the interaction between ACBD5 and the ER protein VAPB, which we have previously shown to form a tether complex at peroxisome-ER contacts, is controlled by phosphorylation of ACBD5 at two different sites of its FFAT motif - the VAPB binding site. We also identify the kinase GSK3-ß as being responsible for direct phosphorylation of ACBD5 to negatively regulate interaction with VAPB, leading to reduced peroxisome-ER contacts. In this article we provide additional insights into how this work, in combination with other studies on phosphorylation of VAP interactors, suggests a complex system of both positive and negative regulation of the FFAT motif via phosphorylation.

7.
J Cell Biol ; 221(3)2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35019937

RESUMEN

Peroxisomes and the endoplasmic reticulum (ER) cooperate in cellular lipid metabolism. They form membrane contacts through interaction of the peroxisomal membrane protein ACBD5 (acyl-coenzyme A-binding domain protein 5) and the ER-resident protein VAPB (vesicle-associated membrane protein-associated protein B). ACBD5 binds to the major sperm protein domain of VAPB via its FFAT-like (two phenylalanines [FF] in an acidic tract) motif. However, molecular mechanisms, which regulate formation of these membrane contact sites, are unknown. Here, we reveal that peroxisome-ER associations via the ACBD5-VAPB tether are regulated by phosphorylation. We show that ACBD5-VAPB binding is phosphatase-sensitive and identify phosphorylation sites in the flanking regions and core of the FFAT-like motif, which alter interaction with VAPB-and thus peroxisome-ER contact sites-differently. Moreover, we demonstrate that GSK3ß (glycogen synthase kinase-3 ß) regulates this interaction. Our findings reveal for the first time a molecular mechanism for the regulation of peroxisome-ER contacts in mammalian cells and expand the current model of FFAT motifs and VAP interaction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Retículo Endoplásmico/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencias de Aminoácidos , Animales , Línea Celular , Retículo Endoplásmico/ultraestructura , Humanos , Proteínas de la Membrana/genética , Ratones , Mutación/genética , Peroxisomas/ultraestructura , Fosforilación , Fosfoserina/metabolismo , Unión Proteica
8.
Biochim Biophys Acta Mol Cell Res ; 1867(5): 118675, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32044385

RESUMEN

Members of the large multigene family of acyl-CoA binding domain containing proteins (ACBDs) share a conserved motif required for binding of Coenzyme A esterified fatty acids of various chain length. These proteins are present in the three kingdoms of life, and despite their predicted roles in cellular lipid metabolism, knowledge about the precise functions of many ACBD proteins remains scarce. Interestingly, several ACBD proteins are now suggested to function at organelle contact sites, and are recognized as host interaction proteins for different pathogens including viruses and bacteria. Here, we present a thorough phylogenetic analysis of the ACBD family and discuss their structure and evolution. We summarize recent findings on the various functions of animal and fungal ACBDs with particular focus on peroxisomes, the role of ACBD proteins at organelle membranes, and their increasing recognition as targets for pathogens.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Hongos/metabolismo , Neoplasias/metabolismo , Animales , Proteínas Portadoras/química , Evolución Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hongos/química , Hongos/genética , Metabolismo de los Lípidos , Modelos Moleculares , Filogenia , Conformación Proteica , Dominios Proteicos
9.
Artículo en Inglés | MEDLINE | ID: mdl-31198905

RESUMEN

Peroxisomes and the endoplasmic reticulum (ER) cooperate extensively in lipid-related metabolic pathways, and the ER also provides phospholipids to enable the peroxisomal membrane to expand prior to division. Recently, we identified peroxisomal proteins ACBD5 and ACBD4, and the ER protein VAPB as tethering components which physically interact to foster peroxisome-ER associations at membrane contact sites. Overexpression or loss of these tether proteins alters the extent of peroxisome-ER interactions, impacting on lipid exchange between these two compartments. To facilitate further studies into peroxisome-ER associations at the level of membrane contact sites, their role, composition and regulation, we have developed two fluorescence-based systems to monitor peroxisome-ER interactions. We modified a proximity ligation assay and a split-fluorescence reporter system using split superfolder green fluorescent protein. Using the proximity ligation assay we were able to measure changes in peroxisome-ER interactions whilst the split-fluorescence reporter was more limited and only allowed us to label ER-peroxisome contacts. We show that both techniques can be useful additions to the toolkit of methods to study peroxisome-ER associations and explore the relative merits of each.

11.
PLoS One ; 13(12): e0209507, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30589881

RESUMEN

Peroxisomes can be frequently found in proximity to other subcellular organelles such as the endoplasmic reticulum (ER), mitochondria or lysosomes. The tail-anchored protein ACBD5 was recently identified as part of a tethering complex at peroxisome-ER contact sites, interacting with the ER resident protein VAPB. Contact site disruption was found to significantly increase peroxisome motility, apparently interfering with intracellular positioning systems. Unlike other somatic cells, neurons have to distribute organelles across relatively long distances in order to maintain their extraordinary cellular polarity. Using confocal live imaging microscopy in cultured hippocampal neurons we observed that peroxisomes and mitochondria show a strikingly similar motility with approximately 10% performing microtubule-driven long range movements. In order to investigate if ER contacts influence overall peroxisome motility and cellular distribution patterns, hippocampal neurons were transfected with plasmids encoding ACBD5 to stimulate peroxisome-ER interactions. Overexpression of ACBD5 reduced peroxisomal long range movements in the neurites of the hippocampal cells by 70%, implying that ER attachment counteracts microtubule-driven peroxisome transport, while mitochondrial motility was unaffected. Moreover, the analyses of peroxisome distribution in fixed neurons unveiled a significant redistribution of peroxisomes towards the periphery of the perikaryon underneath the plasma membrane and into neurites, where peroxisomes are frequently found in close proximity to mitochondria. Surprisingly, further analysis of peroxisome and VAPB distribution upon ACBD5 expression did not reveal a substantial colocalization, implying this effect may be independent of VAPB. In line with these findings, expression of an ACBD5 variant unable to bind to VAPB still altered the localization of peroxisomes in the same way as the wild-type ACBD5. Thus, we conclude, that the VAPB-ACBD5 facilitated peroxisome-ER interaction is not responsible for the observed organelle redistribution in neurons. Rather, we suggest that additional ACBD5-binding proteins in neurons may tether peroxisomes to contact sites at or near the plasma membrane of neurons.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/citología , Peroxisomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células Cultivadas , Embrión de Mamíferos , Retículo Endoplásmico/metabolismo , Femenino , Hipocampo/citología , Microscopía Intravital/métodos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal/métodos , Membranas Mitocondriales/metabolismo , Neuronas/metabolismo , Cultivo Primario de Células , Proteínas de Transporte Vesicular
12.
Subcell Biochem ; 89: 383-415, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30378033

RESUMEN

Peroxisomes and mitochondria are dynamic, multifunctional organelles that play pivotal cooperative roles in the metabolism of cellular lipids and reactive oxygen species. Their functional interplay, the "peroxisome-mitochondria connection", also includes cooperation in anti-viral signalling and defence, as well as coordinated biogenesis by sharing key division proteins. In this review, we focus on multi-localised proteins which are shared by peroxisomes and mitochondria in mammals. We first outline the targeting and sharing of matrix proteins which are involved in metabolic cooperation. Next, we discuss shared components of peroxisomal and mitochondrial dynamics and division, and we present novel insights into the dual targeting of tail-anchored membrane proteins. Finally, we provide an overview of what is currently known about the role of shared membrane proteins in disease. What emerges is that sharing of proteins between these two organelles plays a key role in their cooperative functions which, based on new findings, may be more extensive than originally envisaged. Gaining a better insight into organelle interplay and the targeting of shared proteins is pivotal to understanding how organelle cooperation contributes to human health and disease.


Asunto(s)
Mitocondrias/metabolismo , Peroxisomas/metabolismo , Animales , Humanos , Proteínas de la Membrana/metabolismo , Redes y Vías Metabólicas , Especies Reactivas de Oxígeno/metabolismo
13.
Sci Rep ; 8(1): 7949, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29785040

RESUMEN

The transcriptional responses of yeast cells to diverse stresses typically include gene activation and repression. Specific stress defense, citric acid cycle and oxidative phosphorylation genes are activated, whereas protein synthesis genes are coordinately repressed. This view was achieved from comparative transcriptomic experiments delineating sets of genes whose expression greatly changed with specific stresses. Less attention has been paid to the biological significance of 1) consistent, albeit modest, changes in RNA levels across multiple conditions, and 2) the global gene expression correlations observed when comparing numerous genome-wide studies. To address this, we performed a meta-analysis of 1379 microarray-based experiments in yeast, and identified 1388 blocks of RNAs whose expression changes correlate across multiple and diverse conditions. Many of these blocks represent sets of functionally-related RNAs that act in a coordinated fashion under normal and stress conditions, and map to global cell defense and growth responses. Subsequently, we used the blocks to analyze novel RNA-seq experiments, demonstrating their utility and confirming the conclusions drawn from the meta-analysis. Our results provide a new framework for understanding the biological significance of changes in gene expression: 'archetypal' transcriptional blocks that are regulated in a concerted fashion in response to external stimuli.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Estrés Fisiológico , Transcripción Genética , Perfilación de la Expresión Génica , Metaanálisis como Asunto , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Curr Opin Cell Biol ; 50: 50-56, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29475136

RESUMEN

Peroxisome biogenesis is governed by molecular machineries, which are either unique to peroxisomes or are partially shared with mitochondria. As peroxisomes have important protective functions in the cell, modulation of their number is important for human health and disease. Significant progress has been made towards our understanding of the mechanisms of peroxisome formation, revealing a remarkable plasticity of the peroxisome biogenesis pathway. Here we discuss most recent findings with particular focus on peroxisome formation in mammalian cells.


Asunto(s)
Biogénesis de Organelos , Peroxisomas/metabolismo , Animales , Humanos , Membranas Intracelulares/metabolismo , Redes y Vías Metabólicas , Mitocondrias/metabolismo , Peroxisomas/patología
15.
Traffic ; 19(3): 229-242, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29364559

RESUMEN

Peroxisomes are dynamic organelles which fulfil essential roles in lipid and ROS metabolism. Peroxisome movement and positioning allows interaction with other organelles and is crucial for their cellular function. In mammalian cells, such movement is microtubule-dependent and mediated by kinesin and dynein motors. The mechanisms of motor recruitment to peroxisomes are largely unknown, as well as the role this plays in peroxisome membrane dynamics and proliferation. Here, using a combination of microscopy, live-cell imaging analysis and mathematical modelling, we identify a role for Mitochondrial Rho GTPase 1 (MIRO1) as an adaptor for microtubule-dependent peroxisome motility in mammalian cells. We show that MIRO1 is targeted to peroxisomes and alters their distribution and motility. Using a peroxisome-targeted MIRO1 fusion protein, we demonstrate that MIRO1-mediated pulling forces contribute to peroxisome membrane elongation and proliferation in cellular models of peroxisome disease. Our findings reveal a molecular mechanism for establishing peroxisome-motor protein associations in mammalian cells and provide new insights into peroxisome membrane dynamics in health and disease.


Asunto(s)
Membranas Intracelulares/metabolismo , Peroxisomas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Humanos , Membranas Intracelulares/ultraestructura , Ratones , Microtúbulos/metabolismo , Biogénesis de Organelos , Peroxisomas/ultraestructura , Transporte de Proteínas , Proteínas de Unión al GTP rho/genética
16.
Genome Biol ; 18(1): 201, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29078784

RESUMEN

BACKGROUND: Translation factors eIF4E and eIF4G form eIF4F, which interacts with the messenger RNA (mRNA) 5' cap to promote ribosome recruitment and translation initiation. Variations in the association of eIF4F with individual mRNAs likely contribute to differences in translation initiation frequencies between mRNAs. As translation initiation is globally reprogrammed by environmental stresses, we were interested in determining whether eIF4F interactions with individual mRNAs are reprogrammed and how this may contribute to global environmental stress responses. RESULTS: Using a tagged-factor protein capture and RNA-sequencing (RNA-seq) approach, we have assessed how mRNA associations with eIF4E, eIF4G1 and eIF4G2 change globally in response to three defined stresses that each cause a rapid attenuation of protein synthesis: oxidative stress induced by hydrogen peroxide and nutrient stresses caused by amino acid or glucose withdrawal. We find that acute stress leads to dynamic and unexpected changes in eIF4F-mRNA interactions that are shared among each factor and across the stresses imposed. eIF4F-mRNA interactions stabilised by stress are predominantly associated with translational repression, while more actively initiating mRNAs become relatively depleted for eIF4F. Simultaneously, other mRNAs are insulated from these stress-induced changes in eIF4F association. CONCLUSION: Dynamic eIF4F-mRNA interaction changes are part of a coordinated early translational control response shared across environmental stresses. Our data are compatible with a model where multiple mRNA closed-loop complexes form with differing stability. Hence, unexpectedly, in the absence of other stabilising factors, rapid translation initiation on mRNAs correlates with less stable eIF4F interactions.


Asunto(s)
Factor 4F Eucariótico de Iniciación/metabolismo , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/metabolismo , Estrés Fisiológico/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Cell Cycle ; 16(11): 1039-1045, 2017 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-28463579

RESUMEN

Cooperation between cellular organelles such as mitochondria, peroxisomes and the ER is essential for a variety of important and diverse metabolic processes. Effective communication and metabolite exchange requires physical linkages between the organelles, predominantly in the form of organelle contact sites. At such contact sites organelle membranes are brought into close proximity by the action of molecular tethers, which often consist of specific protein pairs anchored in the membrane of the opposing organelles. Currently numerous tethering components have been identified which link the ER with multiple other organelles but knowledge of the factors linking the ER with peroxisomes is limited. Peroxisome-ER interplay is important because it is required for the biosynthesis of unsaturated fatty acids, ether-phospholipids and sterols with defects in these functions leading to severe diseases. Here, we characterize acyl-CoA binding domain protein 4 (ACBD4) as a tail-anchored peroxisomal membrane protein which interacts with the ER protein, vesicle-associated membrane protein-associated protein-B (VAPB) to promote peroxisome-ER associations.


Asunto(s)
Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Peroxisomas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Células COS , Proteínas Portadoras/química , Chlorocebus aethiops , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Unión Proteica
18.
J Cell Sci ; 130(9): 1675-1687, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28325759

RESUMEN

Tail-anchored (TA) proteins contain a single transmembrane domain (TMD) at the C-terminus that anchors them to the membranes of organelles where they mediate critical cellular processes. Accordingly, mutations in genes encoding TA proteins have been identified in a number of severe inherited disorders. Despite the importance of correctly targeting a TA protein to its appropriate membrane, the mechanisms and signals involved are not fully understood. In this study, we identify additional peroxisomal TA proteins, discover more proteins that are present on multiple organelles, and reveal that a combination of TMD hydrophobicity and tail charge determines targeting to distinct organelle locations in mammals. Specifically, an increase in tail charge can override a hydrophobic TMD signal and re-direct a protein from the ER to peroxisomes or mitochondria and vice versa. We show that subtle changes in those parameters can shift TA proteins between organelles, explaining why peroxisomes and mitochondria have many of the same TA proteins. This enabled us to associate characteristic physicochemical parameters in TA proteins with particular organelle groups. Using this classification allowed successful prediction of the location of uncharacterized TA proteins for the first time.


Asunto(s)
Compartimento Celular , Mamíferos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Células Hep G2 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Intracelulares/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Peroxisomas/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Fracciones Subcelulares/metabolismo
19.
J Cell Biol ; 216(2): 331-342, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28108524

RESUMEN

Peroxisomes (POs) and the endoplasmic reticulum (ER) cooperate in cellular lipid metabolism and form tight structural associations, which were first observed in ultrastructural studies decades ago. PO-ER associations have been suggested to impact on a diverse number of physiological processes, including lipid metabolism, phospholipid exchange, metabolite transport, signaling, and PO biogenesis. Despite their fundamental importance to cell metabolism, the mechanisms by which regions of the ER become tethered to POs are unknown, in particular in mammalian cells. Here, we identify the PO membrane protein acyl-coenzyme A-binding domain protein 5 (ACBD5) as a binding partner for the resident ER protein vesicle-associated membrane protein-associated protein B (VAPB). We show that ACBD5-VAPB interaction regulates PO-ER associations. Moreover, we demonstrate that loss of PO-ER association perturbs PO membrane expansion and increases PO movement. Our findings reveal the first molecular mechanism for establishing PO-ER associations in mammalian cells and report a new function for ACBD5 in PO-ER tethering.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Movimiento , Peroxisomas/metabolismo , Uniones Estrechas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células COS , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Células Hep G2 , Humanos , Membranas Intracelulares/ultraestructura , Proteínas de la Membrana/genética , Microscopía Fluorescente , Peroxisomas/ultraestructura , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección , Proteínas de Transporte Vesicular/genética
20.
Nucleic Acids Res ; 44(20): 9698-9709, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27458202

RESUMEN

In protein synthesis translation factor eIF2 binds initiator tRNA to ribosomes and facilitates start codon selection. eIF2 GDP/GTP status is regulated by eIF5 (GAP and GDI functions) and eIF2B (GEF and GDF activities), while eIF2α phosphorylation in response to diverse signals is a major point of translational control. Here we characterize a growth suppressor mutation in eIF2ß that prevents eIF5 GDI and alters cellular responses to reduced eIF2B activity, including control of GCN4 translation. By monitoring the binding of fluorescent nucleotides and initiator tRNA to purified eIF2 we show that the eIF2ß mutation does not affect intrinsic eIF2 affinities for these ligands, neither does it interfere with eIF2 binding to 43S pre-initiation complex components. Instead we show that the eIF2ß mutation prevents eIF5 GDI stabilizing nucleotide binding to eIF2, thereby altering the off-rate of GDP from eIF2•GDP/eIF5 complexes. This enables cells to grow with reduced eIF2B GEF activity but impairs activation of GCN4 targets in response to amino acid starvation. These findings provide support for the importance of eIF5 GDI activity in vivo and demonstrate that eIF2ß acts in concert with eIF5 to prevent premature release of GDP from eIF2γ and thereby ensure tight control of protein synthesis initiation.


Asunto(s)
Factor 2B Eucariótico de Iniciación/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Biosíntesis de Proteínas , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Factor 2B Eucariótico de Iniciación/química , Factor 2B Eucariótico de Iniciación/genética , Evolución Molecular , Inhibidores de Disociación de Guanina Nucleótido/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas Represoras/química , Levaduras/efectos de los fármacos , Levaduras/genética , Levaduras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...