RESUMEN
BACKGROUND: The ablation of advanced head and neck cancer often results in large three-dimensional defects that require free tissue transfer to optimally address functional and cosmetic issues. The subscapular system is a highly versatile donor site for flaps used for head and neck reconstruction. Traditional methods of harvesting subscapular flaps require repositioning and re-preparing, which significantly increases the operative time and prevents simultaneous harvesting of the flap. METHOD: This paper presents our experience of a single-stage 'sit and tilt' technique, which provides a convenient method for harvesting subscapular system free flaps without significant repositioning. RESULTS AND CONCLUSION: This technique was used for a variety of head and neck defects, and body habitus did not seem to affect free tissue harvesting. It is hoped that utilisation of this preparation and harvesting technique will make head and neck surgeons more willing to take advantage of the subscapular system.
Asunto(s)
Colgajos Tisulares Libres , Neoplasias de Cabeza y Cuello/cirugía , Escápula/trasplante , Colgajos Tisulares Libres/cirugía , Humanos , Postura , Procedimientos de Cirugía Plástica , Pruebas de Mesa Inclinada , Recolección de Tejidos y Órganos , Resultado del TratamientoRESUMEN
The desmosomal cadherin desmoglein-1 (DSG1) is an essential intercellular adhesion molecule that is altered in various human cutaneous disorders; however, its regulation and function in allergic disease remains unexplored. Herein, we demonstrate a specific reduction in DSG1 in esophageal biopsies from patients with eosinophilic esophagitis (EoE), an emerging allergic disorder characterized by chronic inflammation within the esophageal mucosa. Further, we show that DSG1 gene silencing weakens esophageal epithelial integrity, and induces cell separation and impaired barrier function (IBF) despite high levels of desmoglein-3. Moreover, DSG1 deficiency induces transcriptional changes that partially overlap with the transcriptome of inflamed esophageal mucosa; notably, periostin (POSTN), a multipotent pro-inflammatory extracellular matrix molecule, is the top induced overlapping gene. We further demonstrate that IBF is a pathological feature in EoE, which can be partially induced through the downregulation of DSG1 by interleukin-13 (IL-13). Taken together, these data identify a functional role for DSG1 and its dysregulation by IL-13 in the pathophysiology of EoE and suggest that the loss of DSG1 may potentiate allergic inflammation through the induction of pro-inflammatory mediators such as POSTN.