Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell ; 184(22): 5653-5669.e25, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34672952

RESUMEN

Cells repair DNA double-strand breaks (DSBs) through a complex set of pathways critical for maintaining genomic integrity. To systematically map these pathways, we developed a high-throughput screening approach called Repair-seq that measures the effects of thousands of genetic perturbations on mutations introduced at targeted DNA lesions. Using Repair-seq, we profiled DSB repair products induced by two programmable nucleases (Cas9 and Cas12a) in the presence or absence of oligonucleotides for homology-directed repair (HDR) after knockdown of 476 genes involved in DSB repair or associated processes. The resulting data enabled principled, data-driven inference of DSB end joining and HDR pathways. Systematic interrogation of this data uncovered unexpected relationships among DSB repair genes and demonstrated that repair outcomes with superficially similar sequence architectures can have markedly different genetic dependencies. This work provides a foundation for mapping DNA repair pathways and for optimizing genome editing across diverse modalities.


Asunto(s)
Roturas del ADN de Doble Cadena , Genómica , Proteína 9 Asociada a CRISPR/metabolismo , Línea Celular , Análisis por Conglomerados , Reparación del ADN/genética , Edición Génica , Regulación de la Expresión Génica , Genoma Humano , Humanos , Fenotipo , ARN Guía de Kinetoplastida/metabolismo , Reproducibilidad de los Resultados
2.
EMBO Mol Med ; 13(3): e13545, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33475257

RESUMEN

Precise correction of the CD40LG gene in T cells and hematopoietic stem/progenitor cells (HSPC) holds promise for treating X-linked hyper-IgM Syndrome (HIGM1), but its actual therapeutic potential remains elusive. Here, we developed a one-size-fits-all editing strategy for effective T-cell correction, selection, and depletion and investigated the therapeutic potential of T-cell and HSPC therapies in the HIGM1 mouse model. Edited patients' derived CD4 T cells restored physiologically regulated CD40L expression and contact-dependent B-cell helper function. Adoptive transfer of wild-type T cells into conditioned HIGM1 mice rescued antigen-specific IgG responses and protected mice from a disease-relevant pathogen. We then obtained ~ 25% CD40LG editing in long-term repopulating human HSPC. Transplanting such proportion of wild-type HSPC in HIGM1 mice rescued immune functions similarly to T-cell therapy. Overall, our findings suggest that autologous edited T cells can provide immediate and substantial benefits to HIGM1 patients and position T-cell ahead of HSPC gene therapy because of easier translation, lower safety concerns and potentially comparable clinical benefits.


Asunto(s)
Síndrome de Inmunodeficiencia con Hiper-IgM Tipo 1 , Síndrome de Inmunodeficiencia con Hiper-IgM , Animales , Edición Génica , Células Madre Hematopoyéticas , Humanos , Ratones , Linfocitos T
3.
CRISPR J ; 3(3): 177-187, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32584143

RESUMEN

Multiplexed genome editing with DNA endonucleases has broad application, including for cellular therapies, but chromosomal translocations, natural byproducts of inducing simultaneous genomic breaks, have not been explored in detail. Here we apply various CRISPR-Cas nucleases to edit the T cell receptor alpha and beta 2 microglobulin genes in human primary T cells and comprehensively evaluate the frequency and stability of the resulting translocations. A thorough translocation frequency analysis using three orthogonal methods (droplet digital PCR, unidirectional sequencing, and metaphase fluorescence in situ hybridization) yielded comparable results and an overall translocation rate of ∼7% between two simultaneous CRISPR-Cas9 induced edits. In addition, we show that chromosomal translocations can be reduced when using different nuclease combinations, or by the presence of a homologous single stranded oligo donor for multiplexed genome editing. Importantly, the two different approaches for translocation reduction are compatible with cell therapy applications.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Linfocitos T , Translocación Genética , Linfocitos T CD4-Positivos , Proteína 9 Asociada a CRISPR/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/genética , Endonucleasas/genética , Genoma Humano , Humanos , Hibridación Fluorescente in Situ , Herencia Multifactorial , ARN Guía de Kinetoplastida , Streptococcus pyogenes
4.
Cancer Metab ; 8: 1, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31908776

RESUMEN

BACKGROUND: Metabolic programs in cancer cells are influenced by genotype and the tissue of origin. We have previously shown that central carbon metabolism is rewired in pancreatic ductal adenocarcinoma (PDA) to support proliferation through a glutamate oxaloacetate transaminase 1 (GOT1)-dependent pathway. METHODS: We utilized a doxycycline-inducible shRNA-mediated strategy to knockdown GOT1 in PDA and colorectal cancer (CRC) cell lines and tumor models of similar genotype. These cells were analyzed for the ability to form colonies and tumors to test if tissue type impacted GOT1 dependence. Additionally, the ability of GOT1 to impact the response to chemo- and radiotherapy was assessed. Mechanistically, the associated specimens were examined using a combination of steady-state and stable isotope tracing metabolomics strategies and computational modeling. Statistics were calculated using GraphPad Prism 7. One-way ANOVA was performed for experiments comparing multiple groups with one changing variable. Student's t test (unpaired, two-tailed) was performed when comparing two groups to each other. Metabolomics data comparing three PDA and three CRC cell lines were analyzed by performing Student's t test (unpaired, two-tailed) between all PDA metabolites and CRC metabolites. RESULTS: While PDA exhibits profound growth inhibition upon GOT1 knockdown, we found CRC to be insensitive. In PDA, but not CRC, GOT1 inhibition disrupted glycolysis, nucleotide metabolism, and redox homeostasis. These insights were leveraged in PDA, where we demonstrate that radiotherapy potently enhanced the effect of GOT1 inhibition on tumor growth. CONCLUSIONS: Taken together, these results illustrate the role of tissue type in dictating metabolic dependencies and provide new insights for targeting metabolism to treat PDA.

6.
Nat Commun ; 8: 13905, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28067217

RESUMEN

The CRISPR-Cas9 system provides a versatile toolkit for genome engineering that can introduce various DNA lesions at specific genomic locations. However, a better understanding of the nature of these lesions and the repair pathways engaged is critical to realizing the full potential of this technology. Here we characterize the different lesions arising from each Cas9 variant and the resulting repair pathway engagement. We demonstrate that the presence and polarity of the overhang structure is a critical determinant of double-strand break repair pathway choice. Similarly, single nicks deriving from different Cas9 variants differentially activate repair: D10A but not N863A-induced nicks are repaired by homologous recombination. Finally, we demonstrate that homologous recombination is required for repairing lesions using double-stranded, but not single-stranded DNA as a template. This detailed characterization of repair pathway choice in response to CRISPR-Cas9 enables a more deterministic approach for designing research and therapeutic genome engineering strategies.


Asunto(s)
Proteína BRCA2/genética , Sistemas CRISPR-Cas , ADN/genética , Edición Génica/métodos , Genoma Humano , Recombinasa Rad51/genética , Reparación del ADN por Recombinación , Proteína BRCA2/antagonistas & inhibidores , Proteína BRCA2/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteína 9 Asociada a CRISPR , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/metabolismo , Roturas del ADN de Doble Cadena , Endonucleasas/genética , Endonucleasas/metabolismo , Células HEK293 , Humanos , Células K562 , Osteoblastos/citología , Osteoblastos/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Recombinasa Rad51/antagonistas & inhibidores , Recombinasa Rad51/metabolismo
7.
Science ; 332(6035): 1313-7, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21659603

RESUMEN

The DNA damage response (DDR) is brought about by a protein kinase cascade that orchestrates DNA repair through transcriptional and posttranslational mechanisms. Cell cycle arrest is a hallmark of the DDR. We screened for cells that lacked damage-induced cell cycle arrest and uncovered a critical role for Fanconi anemia and homologous recombination proteins in ATR (ataxia telangiectasia and Rad3-related) signaling. Three DDR candidates, the RNA processing protein INTS7, the circadian transcription factor CLOCK, and a previously uncharacterized protein RHINO, were recruited to sites of DNA damage. RHINO independently bound the Rad9-Rad1-Hus1 complex (9-1-1) and the ATR activator TopBP1. RHINO was recruited to sites of DNA damage by the 9-1-1 complex to promote Chk1 activation. We suggest that RHINO functions together with the 9-1-1 complex and TopBP1 to fully activate ATR.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas de Ciclo Celular/metabolismo , Quimiocinas/fisiología , Reparación del ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas Portadoras/metabolismo , Ciclo Celular/genética , Línea Celular Tumoral , Quimiocinas/genética , Quimiocinas CXC , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Exonucleasas/metabolismo , Humanos , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo
8.
Genes Dev ; 24(17): 1939-50, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20810650

RESUMEN

In response to DNA damage, cells activate a complex signal transduction network called the DNA damage response (DDR). To enhance our current understanding of the DDR network, we performed a genome-wide RNAi screen to identify genes required for resistance to ionizing radiation (IR). Along with a number of known DDR genes, we discovered a large set of novel genes whose depletion leads to cellular sensitivity to IR. Here we describe TTI1 (Tel two-interacting protein 1) and TTI2 as highly conserved regulators of the DDR in mammals. TTI1 and TTI2 protect cells from spontaneous DNA damage, and are required for the establishment of the intra-S and G2/M checkpoints. TTI1 and TTI2 exist in multiple complexes, including a 2-MDa complex with TEL2 (telomere maintenance 2), called the Triple T complex, and phosphoinositide-3-kinase-related protein kinases (PIKKs) such as ataxia telangiectasia-mutated (ATM). The components of the TTT complex are mutually dependent on each other, and act as critical regulators of PIKK abundance and checkpoint signaling.


Asunto(s)
Proteínas Portadoras , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-ets , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Daño del ADN/efectos de la radiación , Genes cdc , Estudio de Asociación del Genoma Completo , Humanos , Rayos Infrarrojos , Péptidos y Proteínas de Señalización Intracelular , Chaperonas Moleculares , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Interferencia de ARN
10.
Methods Enzymol ; 409: 442-62, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16793417

RESUMEN

Replication of the eukaryotic genome is a difficult task, as cells must coordinate chromosome replication with chromatin remodeling, DNA recombination, DNA repair, transcription, cell cycle progression, and sister chromatid cohesion. Yet, DNA replication is a potentially genotoxic process, particularly when replication forks encounter a bulge in the template: forks under these conditions may stall and restart or even break down leading to fork collapse. It is now clear that fork collapse stimulates chromosomal rearrangements and therefore represents a potential source of DNA damage. Hence, the comprehension of the mechanisms that preserve replication fork integrity or that promote fork collapse are extremely relevant for the understanding of the cellular processes controlling genome stability. Here we describe some experimental approaches that can be used to physically visualize the quality of replication forks in the yeast S. cerevisiae and to distinguish between stalled and collapsed forks.


Asunto(s)
Replicación del ADN , Saccharomyces cerevisiae/genética , Southern Blotting , División Celular , Cromatografía en Gel , ADN de Hongos/genética , Electroforesis en Gel de Agar , Electroforesis en Gel Bidimensional , Microscopía Electrónica , Saccharomyces cerevisiae/citología
11.
Genes Dev ; 19(3): 339-50, 2005 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-15687257

RESUMEN

S-phase cells overcome chromosome lesions through replication-coupled recombination processes that seem to be assisted by recombination-dependent DNA structures and/or replication-related sister chromatid junctions. RecQ helicases, including yeast Sgs1 and human BLM, have been implicated in both replication and recombination and protect genome integrity by preventing unscheduled mitotic recombination events. We have studied the RecQ helicase-mediated mechanisms controlling genome stability by analyzing replication forks encountering a damaged template in sgs1 cells. We show that, in sgs1 mutants, recombination-dependent cruciform structures accumulate at damaged forks. Their accumulation requires Rad51 protein, is counteracted by Srs2 DNA helicase, and does not prevent fork movement. Sgs1, but not Srs2, promotes resolution of these recombination intermediates. A functional Rad53 checkpoint kinase that is known to protect the integrity of the sister chromatid junctions is required for the accumulation of recombination intermediates in sgs1 mutants. Finally, top3 and top3 sgs1 mutants accumulate the same structures as sgs1 cells. We suggest that, in sgs1 cells, the unscheduled accumulation of Rad51-dependent cruciform structures at damaged forks result from defective maturation of recombination-dependent intermediates that originate from the replication-related sister chromatid junctions. Our findings might contribute to explaining some of the recombination defects of BLM cells.


Asunto(s)
Adenosina Trifosfatasas/deficiencia , ADN Helicasas/deficiencia , ADN Helicasas/metabolismo , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , ADN Helicasas/genética , Recombinasa Rad51 , RecQ Helicasas , Proteínas de Saccharomyces cerevisiae , Levaduras/genética , Levaduras/metabolismo
12.
Mol Cell ; 17(1): 153-9, 2005 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-15629726

RESUMEN

The replication checkpoint coordinates the cell cycle with DNA replication and recombination, preventing genome instability and cancer. The budding yeast Rad53 checkpoint kinase stabilizes stalled forks and replisome-fork complexes, thus preventing the accumulation of ss-DNA regions and reversed forks at collapsed forks. We searched for factors involved in the processing of stalled forks in HU-treated rad53 cells. Using the neutral-neutral two-dimensional electrophoresis technique (2D gel) and psoralen crosslinking combined with electron microscopy (EM), we found that the Exo1 exonuclease is recruited to stalled forks and, in rad53 mutants, counteracts reversed fork accumulation by generating ss-DNA intermediates. Hence, Exo1-mediated fork processing resembles the action of E. coli RecJ nuclease at damaged forks. Fork stability and replication restart are influenced by both DNA polymerase-fork association and Exo1-mediated processing. We suggest that Exo1 counteracts fork reversal by resecting newly synthesized chains and resolving the sister chromatid junctions that cause regression of collapsed forks.


Asunto(s)
Replicación del ADN , Exodesoxirribonucleasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Replicación del ADN/efectos de los fármacos , ADN de Hongos/biosíntesis , ADN de Hongos/ultraestructura , ADN de Cadena Simple/metabolismo , Exodesoxirribonucleasas/genética , Genes Fúngicos , Hidroxiurea/farmacología , Microscopía Electrónica , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Oncogene ; 23(6): 1206-13, 2004 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-14647447

RESUMEN

The replication checkpoint controls the integrity of replicating chromosomes by stabilizing stalled forks, thus preventing the accumulation of abnormal replication and recombination intermediates that contribute to genome instability. Checkpoint-defective cells are susceptible to rearrangements at chromosome fragile sites when replication pauses, and certain human cancer prone diseases suffer checkpoint abnormalities. It is unclear as to how the checkpoint stabilizes stalled forks and how cells sense replication blocks. We have analysed the checkpoint contribution in controlling replisome-fork association when replication pauses. We show that in yeast wild-type cells, stalled forks exhibit stable replisome complexes and the checkpoint sensors Ddc1 and Ddc2, thus activating Rad53 checkpoint kinase. Ddc1/Ddc2 recruitment on stalled forks and Rad53 activation are influenced by the single-strand-binding protein replication factor A (RFA). rad53 forks exhibit a defective association with DNA polymerases alpha, epsilon and delta. Further, in rad53 mutants, stalled forks progressively generate abnormal structures that turn into checkpoint signals by accumulating RFA, Ddc1 and Ddc2. We suggest that, following replication blocks, checkpoint activation mediated by RFA-ssDNA filaments stabilizes stalled forks by controlling replisome-fork association, thus preventing unscheduled recruitment of recombination enzymes that could otherwise cause the pathological processing of the forks.


Asunto(s)
Proteínas de Ciclo Celular , Aberraciones Cromosómicas , Replicación del ADN/genética , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Quinasa de Punto de Control 2 , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Reordenamiento Génico , Predisposición Genética a la Enfermedad/genética , Humanos , Neoplasias/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/genética
14.
Mol Cell ; 12(6): 1499-510, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14690603

RESUMEN

Cells overcome intra-S DNA damage and replication impediments by coupling chromosome replication to sister chromatid-mediated recombination and replication-bypass processes. Further, molecular junctions between replicated molecules have been suggested to assist sister chromatid cohesion until anaphase. Using two-dimensional gel electrophoresis, we have identified, in yeast cells, replication-dependent X-shaped molecules that appear during origin activation, branch migrate, and distribute along the replicon through a mechanism influenced by the rate of fork progression. Their formation is independent of Rad51- and Rad52-mediated homologous recombination events and is not affected by DNA damage or replication blocks. Further, in hydroxyurea-treated rad53 mutants, altered in the replication checkpoint, the branched molecules progressively degenerate and likely contribute to generate pathological structures. We suggest that cells couple sister chromatid tethering with replication initiation by generating specialized joint molecules resembling hemicatenanes: this process might prime cohesion and assist sister chromatid-mediated recombination and replication events.


Asunto(s)
Proteínas de Ciclo Celular , Cromátides/metabolismo , ADN Nucleotidiltransferasas/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Origen de Réplica , Quinasa de Punto de Control 2 , Daño del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , Conformación de Ácido Nucleico , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinasa Rad51 , Proteína Recombinante y Reparadora de ADN Rad52 , Recombinación Genética , Replicón , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA