Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PeerJ ; 12: e17365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827314

RESUMEN

The saturniid moth genus Automeris includes 145 described species. Their geographic distribution ranges from the eastern half of North America to as far south as Peru. Automeris moths are cryptically colored, with forewings that resemble dead leaves, and conspicuously colored, elaborate eyespots hidden on their hindwings. Despite their charismatic nature, the evolutionary history and relationships within Automeris and between closely related genera, remain poorly understood. In this study, we present the most comprehensive phylogeny of Automeris to date, including 80 of the 145 described species. We also incorporate two morphologically similar hemileucine genera, Pseudautomeris and Leucanella, as well as a morphologically distinct genus, Molippa. We obtained DNA data from both dry-pinned and ethanol-stored museum specimens and conducted Anchored Hybrid Enrichment (AHE) sequencing to assemble a high-quality dataset for phylogenetic analysis. The resulting phylogeny supports Automeris as a paraphyletic genus, with Leucanella and Pseudautomeris nested within, with the most recent common ancestor dating back to 21 mya. This study lays the foundation for future research on various aspects of Automeris biology, including geographical distribution patterns, potential drivers of speciation, and ecological adaptations such as antipredator defense mechanisms.


Asunto(s)
Mariposas Nocturnas , Filogenia , Animales , Mariposas Nocturnas/genética , Mariposas Nocturnas/clasificación , Mariposas Nocturnas/anatomía & histología , Evolución Biológica
2.
Mol Ecol Resour ; 24(1): e13881, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37888995

RESUMEN

Rapid identification of organisms is essential for many biological and medical disciplines, from understanding basic ecosystem processes, disease diagnosis, to the detection of invasive pests. CRISPR-based diagnostics offers a novel and rapid alternative to other identification methods and can revolutionize our ability to detect organisms with high accuracy. Here we describe a CRISPR-based diagnostic developed with the universal cytochrome-oxidase 1 gene (CO1). The CO1 gene is the most sequenced gene among Animalia, and therefore our approach can be adopted to detect nearly any animal. We tested the approach on three difficult-to-identify moth species (Keiferia lycopersicella, Phthorimaea absoluta and Scrobipalpa atriplicella) that are major invasive pests globally. We designed an assay that combines recombinase polymerase amplification (RPA) with CRISPR for signal generation. Our approach has a much higher sensitivity than real-time PCR assays and achieved 100% accuracy for identification of all three species, with a detection limit of up to 120 fM for P. absoluta and 400 fM for the other two species. Our approach does not require a sophisticated laboratory, reduces the risk of cross-contamination, and can be completed in less than 1 h. This work serves as a proof of concept that has the potential to revolutionize animal detection and monitoring.


Asunto(s)
Ecosistema , Lepidópteros , Animales , Insectos , Bioensayo , Complejo IV de Transporte de Electrones/genética
3.
bioRxiv ; 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37292907

RESUMEN

Rapid identification of organisms is essential across many biological and medical disciplines, from understanding basic ecosystem processes and how organisms respond to environmental change, to disease diagnosis and detection of invasive pests. CRISPR-based diagnostics offers a novel and rapid alternative to other identification methods and can revolutionize our ability to detect organisms with high accuracy. Here we describe a CRISPR-based diagnostic developed with the universal cytochrome-oxidase 1 gene (CO1). The CO1 gene is the most sequenced gene among Animalia, and therefore our approach can be adopted to detect nearly any animal. We tested the approach on three difficult-to-identify moth species (Keiferia lycopersicella, Phthorimaea absoluta, and Scrobipalpa atriplicella) that are major invasive pests globally. We designed an assay that combines recombinase polymerase amplification (RPA) with CRISPR for signal generation. Our approach has a much higher sensitivity than other real time-PCR assays and achieved 100% accuracy for identification of all three species, with a detection limit of up to 120 fM for P. absoluta and 400 fM for the other two species. Our approach does not require a lab setting, reduces the risk of cross-contamination, and can be completed in less than one hour. This work serves as a proof of concept that has the potential to revolutionize animal detection and monitoring.

4.
PeerJ ; 11: e14948, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36915657

RESUMEN

Mezcals are distilled Mexican alcoholic beverages consumed by many people across the globe. One of the most popular mezcals is tequila, but there are other forms of mezcal whose production has been part of Mexican culture since the 17th century. It was not until the 1940-50s when the mezcal worm, also known as the "tequila worm", was placed inside bottles of non-tequila mezcal before distribution. These bottled larvae increased public attention for mezcal, especially in Asia, Europe, and the United States. Despite these larvae gaining global interest, their identity has largely remained uncertain other than that they are larvae of one of three distantly related holometabolous insects. We sequenced the COI gene from larvae in different kinds of commercially available mezcals. All larval DNA that amplified was identified as the agave redworm moth, Comadia redtenbacheri. Those that did not amplify were also confirmed morphologically to be the larva of this species.


Asunto(s)
Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Bebidas Alcohólicas/análisis , Larva/genética , ADN/genética , Secuencia de Bases
5.
J Vis Exp ; (188)2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36373905

RESUMEN

Global insect declines continue to accelerate. Effective genetic sampling is critically needed to advance the understanding of many taxa and address existing knowledge gaps. This protocol represents a demonstrated method for nondestructively sampling rare butterflies for population genetic structure or DNA barcoding analyses. It uses the chorion of hatched butterfly ovae to yield sufficiently high quantity and quality DNA for successful gene sequencing to confirm species identity and quantify genetic variation. It may be particularly useful when other tissue sampling techniques are impractical or unavailable. While developed for a lepidopteran, it nonetheless could easily be adapted for use with other insect species. It was specifically designed with ease of use as a goal to help maximize broad implementation by individuals of varying experience and skill levels, such as community scientists, conservation practitioners, and students, and for use over large geographic areas to facilitate broad population sampling. The data generated can help inform taxonomic and listing decisions, conservation and management actions, and enhance basic ecological research.


Asunto(s)
Mariposas Diurnas , Humanos , Animales , Mariposas Diurnas/genética , Dinámica Poblacional
6.
Wellcome Open Res ; 7: 228, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37767015

RESUMEN

We present a genome assembly from an individual male Macaria notata (the peacock moth; Arthropoda; Insecta; Lepidoptera; Geometridae). The genome sequence is 394 megabases in span. The majority of the assembly (99.98%) is scaffolded into 29 chromosomal pseudomolecules with the Z sex chromosome assembled. The complete mitochondrial genome was also assembled and is 15.4 kilobases in length.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...